Как рассчитать ток кз в конце линии. Ток короткого замыкания

Основной причиной нарушения нормального режима работы системы электроснабжения (СЭС) является возникновение коротких замыканий (КЗ) в сети или элементах электрооборудования вследствие повреждения изоляции или неправильных действий обслуживающего персонала. Для снижения ущерба, обусловленного выходом из строя электрооборудования при протекании токов КЗ, а также для быстрого восстановления нормального режима работы СЭС необходимо правильно определять токи КЗ и по ним выбирать электрооборудование, защитную аппаратуру и средства ограничения токов КЗ.

Коротким замыканием называется непосредственное соединение между любыми точками разных фаз, фазы и нулевого провода или фазы с землей, не предусмотренное нормальными условиями работы установки.

Основные виды коротких замыканий в электрических системах:

3. Однофазное КЗ , при котором происходит замыкание одной из фаз на нулевой провод или землю. Условное обозначение точки однофазного КЗ
Токи, напряжения, мощности другие величины, относящиеся однофазному КЗ, обозначаются
,
,
и т.д.

Встречаются и другие виды КЗ, связанные с обрывами проводов и одновременными замыканиями провод различных фаз.

Трёхфазное КЗ является симметричным, поскольку при нём все три фазы оказываются в одинаковых условиях. Все остальные виды коротких замыканий являются несимметричным, так как при них фазы не остаются в одинаковых условиях, вследствие чего системы токов и напряжений получаются искаженными.

При возникновении КЗ общее электрическое сопротивление цепи системы электроснабжения уменьшается, вследствие чего токи в ветвях системы резко увеличиваются, а напряжения на отдельных участках системы снижаются.

Элементы электрических систем обладают активными и реактивными (индуктивными или ёмкостными) сопротивлениями, поэтому при внезапном нарушении нормального режима работы (при возникновении КЗ) электрическая система представляет собой колебательный контур. Токи в ветвях системы и напряжения в отдельных её частях будут изменяться в течение некоторого времени после возникновения КЗ в соответствии с параметрами этого контура. Т.е. за время короткого замыкания в цепи поврежденного участка протекает переходный процесс.

При КЗ в каждой из фаз наряду с периодической составляющей тока (слагающей тока переменного знака) имеет место апериодическая составляющая тока (слагающая постоянного знака), которая также может изменять знак, но через большие промежутки времени по сравнению с периодической.

Мгновенное значение полного тока КЗ для произвольного момента времени:

где - апериодическая составляющая тока КЗ в момент времени
;- угловая частота переменного тока;- фазовый угол напряжения источника в момент времени
;- угол сдвига тока в цепи КЗ относительно напряжения источника;- постоянная времени цепи КЗ;
- индуктивность, индуктивное и активное сопротивление цепи КЗ.

Периодическая составляющая тока КЗ (рис. 1)одинакова для всех трёх фаз и определяется для любого момента времени значением ординаты огибающей, деленной на
. Апериодическая составляющаятока КЗ различна для всех трёх фаз (см. рис. 2)и изменяется в зависимости от момента возникновения КЗ.

Рис. 3. Изменение во времени периодической составляющей тока КЗ:

а) при питании от генераторов без АВР; б) при питании от генераторов с АВР; в) при питании от энергосистемы.

Амплитуда периодической составляющей изменяется в переходном процессе в соответствии с изменением ЭДС источника КЗ (рис. 3).При мощности источника, соизмеримой с мощностью элемента, где рассматривается КЗ, а также отсутствииАРВ генераторов ЭДС источника уменьшается от начального значения
до установившегося
, вследствие чего амплитуда периодической составляющей изменяется от
(сверхпереходной ток КЗ) до
(установившейся то КЗ) (рис. 3,а).

При наличии АРВ генераторов периодическая составляющая тока КЗ изменяется, как показано на рис. 3,б.Снижение периодической составляющей в начальный период КЗ объясняется инерционностью действия устройства АРВ, которое начинает работать через0,08-0,3 с после возникновения КЗ. С повышением тока возбуждения генератора увеличивается его ЭДС и соответственно периодическая составляющая тока КЗ вплоть до установившегося значения.

Если мощность источника существенно больше мощности элемента, где рассматривается КЗ, что соответствует источнику неограниченной мощности, у которого внутреннее сопротивление равно нулю, то ЭДС источника является постоянной. Поэтому периодическая составляющая тока КЗ неизменна в течение переходного процесса (рис. 3,в), т. е.

Апериодическая составляющая тока КЗ различна во всех фазах и может изменяться в зависимости от момента возникновения КЗ и предшествующего режима (в пределах периода). Скорость затухания апериодической составляющей тока зависит от соотношения между активным и индуктивным сопротивлением цепи КЗ, т.е. от постоянной: чем больше активное сопротивление цепи, тем интенсивнее затухание. Апериодическая составляющая тока КЗ заметно проявляется лишь в первые 0,1-0,2 с после возникновения КЗ. Обычноопределяется по наибольшему возможному мгновенному значению, которое (в цепях с преобладающим индуктивным сопротивлением
)имеет место в момент прохождения напряжения источника через нулевое значение (
)и отсутствия тока нагрузки. При этом
.В данном случае полный ток КЗ имеет наибольшее значение. Указанные условия являются расчетными при определении токов КЗ.

Максимальный мгновенный ток КЗ имеет место примерно через полпериода, т.е. через 0,01 спосле возникновения КЗ. Наибольший возможный мгновенный ток КЗ называют ударным током (рис. 3).Его определяют для момента
с:

где
- ударный коэффициент, зависящий от постоянной времени цепи КЗ.

Действующее значение полного тока КЗ для произвольного момента времени определяют из выражения:

(3.4)

где - действующее значение периодической составляющей тока КЗ;- действующее значение апериодической составляющей, равной

(3.5)

Наибольшее действующее значение ударного тока за первый период от начала процесса КЗ:

(3.6)

Мощность КЗ для произвольного момента времени:

(3.7)

Источники питания КЗ . При расчёте токов КЗ принимают, что источниками питания места КЗ являются турбо- и гидрогенераторы, синхронные компенсаторы и двигатели, асинхронные двигатели. Влияние асинхронных двигателей учитывается только в начальный момент времени и в тех случаях, когда они подключены непосредственно к месту КЗ.

Определяемые величины . При расчёте токов КЗ определяют следующие величины:

-начальное значение периодической составляющей тока КЗ (начальное значение сверхпереходного тока КЗ);

- ударный ток КЗ, необходимый для проверки электрических аппаратов, шин и изоляторов на электродинамическую устойчивость;

- наибольшее действующее значение ударного тока КЗ, необходимое для проверки электрических аппаратов на устойчивость течение первого периода процесса КЗ;

- значениедля
, необходимое для проверки выключателей по отключаемому ими току;

-действующее значение установившегося тока КЗ, по которому проверяют электрические аппараты, шины, проходные изоляторы и кабели на термическую устойчивость;

- мощность КЗ для времени
;определяется для проверки выключателей по предельно допустимой отключаемой мощности. Для быстродействующих выключателей это время может уменьшаться до 0,08 с.

Допущения и расчётные условия . Для облегчения вычислений токов КЗ принимают ряд допущений:

1)ЭДС всех источников считаются совпадающими по фазе;

2)ЭДС источников, значительно удаленных от места КЗ (
),считают неизменными;

3)не учитывают поперечные ёмкостные цепи КЗ (кроме воздушных линий 330 кВи выше и кабельных линий 110 кВи выше) и токи намагничивания трансформаторов;

4)активное сопротивление цепи КЗ учитывают только при соотношении
, гдеи- эквивалентные активные и реактивные сопротивления короткозамкнутой цепи;

5)в ряде случаев не учитывают влияние нагрузок (или учитывают приближенно), в частности влияние мелких асинхронных и синхронных двигателей.

В соответствии с целью определения токов КЗ устанавливают расчётные условия, которые включают в себя составление расчётной схемы, определение режима КЗ, вида КЗ, мест расположения точек КЗ и расчётного времени КЗ.

При определении режима КЗ в зависимости от цели расчёта определяют возможные максимальные и минимальные уровни токов КЗ. Так, например, проверку электротехнического оборудования на электродинамическое и термическое действие токов КЗ осуществляют по наиболее тяжелому режиму -максимальному, когда через проверяемый элемент протекает наибольший ток КЗ. Наоборот, по минимальному режиму, соответствующему наименьшему току КЗ, осуществляют расчёт и проверку работоспособности устройств релейной защиты и автоматики.

Выбор вида КЗ определяется целью расчёта токов КЗ. Для определения электродинамической стойкости аппаратов и жестких шин в качестве расчётного принимают трёхфазное КЗ; для определения термической стойкости аппаратов, проводников -трёхфазное или двухфазное КЗ в зависимости от тока. Проверку отключающей и включающей способностей аппаратов проводят по трёхфазному или по однофазному току КЗ на землю (в сетях с большими токами замыкания на землю) в зависимости от его значения.

Выбор вида КЗ в расчётах релейной защиты определяется её функциональным назначением и может быть трёх-, двух-, однофазным и двухфазным КЗ на землю.

Места расположения точек КЗ выбирают таким образом, чтобы при КЗ проверяемое электрооборудование, проводники находились в наиболее неблагоприятных условиях. Например, для выбора коммутационной аппаратуры необходимо выбирать место КЗ непосредственно на их выходных зажимах, выбор сечения кабельной линии производят по току КЗ в начале линии. Места расположения точек КЗ при расчётах релейной защиты определяют по ее назначению -в начале или конце защищаемого участка.

Расчётное время КЗ. Действительное время, в течение которого происходит КЗ, определяется длительностью действия защиты и отключающей аппаратуры,

. (3.8)

В расчётах используют приведенное (фиктивное) время -промежуток времени, в течение которого установившийся ток КЗ выделяет то же количество тепла, которое должен выделить фактически проходящий ток КЗ за действительное время КЗ.

Приведенное время, соответствующее полному току КЗ,

. (3.9)

где - приведённое время для периодической составляющей тока КЗ;

- приведённое время для апериодической составляющей тока КЗ.

При действительном времени
с приведённое время для периодической составляющей тока КЗ определяют по номограммам.

При действительном времени
с
, где- значение приведённого времени для
с.

Определение приведённого времени для апериодической составляющей , а производится при
по формуле:

, (3.10)

где - отношение начального сверпереходного тока к установившемуся в месте КЗ (
).

При
- по формуле:

. (3.11)

При действительном времени более 1 сек . или
приведённым временем апериодической составляющей тока КЗ () можно пренебречь.

Проектирование электроустановок квартир и коттеджей (Schneider Electric)

2.1. Расчет электрических нагрузок

На начальной стадии проектирования, когда практически неизвестны точные данные электроприемников, но необходимо получить технические условия на присоединение электрической мощности, возникает вопрос, как рассчитать величину установленной мощности потребителей и на этой основе определить расчетную нагрузку на вводе в квартиру или коттедж. При этом, под понятием расчетная электрическая нагрузка Рр потребителя или элемента сети подразумевается мощность, равная ожидаемой максимальной нагрузке за 30 мин.


В Нормативах по определению расчетных электрических нагрузок зданий (квартир), коттеджей, микрорайонов (кварталов) застройки и элементов городской распределительной сети (изменения и дополнения к Инструкции по проектированию городских электрических сетей - РД 34.20.185-94) приведены удельные расчетные нагрузки.


Указанные Нормативы составлены на основании анализа режимов электропотребления перспективного набора электробытовых приборов и машин в квартире (коттедже). Учитывались данные по установленной мощности приборов и машин, определялся суточный расход электроэнергии, возможное время работы каждого прибора и машины.


В удельных расчетных нагрузках за основу принято, что расчетная нагрузка отдельной квартиры (коттеджа) или небольшого числа квартир (коттеджей) определяется приборами эпизодического пользования, но значительной установленной мощности. К таким приборами относятся, например, стиральные машины с подогревом воды, джакузи, посудомоечные машины с подогревом воды, электрические чайники, электрические сауны и др. Для этих приборов определялись коэффициенты спроса с последующим суммированием их расчетных нагрузок с нагрузками всех прочих приборов малой мощности, которые определялись с использованием усредненного значения коэффициента спроса.


Разработчиками Нормативов в качестве базовых исходных данных принято:


1. Средняя площадь квартиры (общая), м2:


в типовых зданий массовой застройки 70


в зданиях с квартирами повышенной комфортности


(элитные) по индивидуальным проектам 150


2. Площадь (общая) коттеджа, м2 50 - 600


3. Средняя семья, чел 3,1


4. Установленная мощность, кВт:


квартир с газовыми плитами 21,4


квартир с электрическими плитами в типовых зданиях 32,6


квартир с электрическими плитами в элитных зданиях 39,6


коттеджей с газовыми плитами 35,7


коттеджей с газовыми плитами и электрическими саунами 48,7


коттеджей с электрическими плитами 47,9


коттеджей с электрическими плитами и электрическими саунами 59,9


В табл. 2.1 приведена удельная расчетная нагрузка электроприемников квартир жилых зданий, а в табл. 2.2 - коттеджей.


Во «Временной инструкции по расчету электрических нагрузок жилых зданий» РМ2696-01 расчетную нагрузку на вводе в квартиру для домов I категории рекомендуется определять по формуле:



где Рз - заявленная мощность электроприемников, определяемая суммированием номинальных мощностей электробытовых и осветительных приборов, а также розеточной сети;


Таблица 2.1 Удельная расчетная электрическая нагрузка электроприемников квартир жилых зданий


Удельная расчетная электрическая нагрузка электроприемников квартир жилых зданий

Потребители электроэнергии

Удельная расчетная электрическая нагрузка, кВт/квартира, при числе квартир

Квартиры с плитами:

На природном газе:

На сжиженном газе (в том числе при групповых установках) и на твердом топливе:

Электрическими мощностью до 8,5 кВт

Квартиры повышенной комфортности с электрическими плитами мощностью до 10,5 кВт


Таблица 2.2 Удельная расчетная электрическая нагрузка электроприемников коттеджей


Удельная расчетная электрическая нагрузка электроприемников коттеджей

Потребители электроэнергии

Удельная расчетная электрическая нагрузка, кВт/коттедж, при числе коттеджей

Коттедж с плитами на природном газе

Коттеджи с плитами на природном газе и электрической сауной мощностью до 12 кВт

Коттеджи с электрическими плитами мощностью до 10,5 кВт

Коттеджи с электрическими плитами мощностью до 10,5 кВт и электрической сауной мощностью до 12 кВт


Кс - коэффициент спроса, зависящий от величины заявленной мощности в квартире.


В соответствии с "Временной инструкцией...” на предпроектных стадиях рекомендуется определять расчетные нагрузки по ориентировочным удельным нагрузкам в соответствии с табл. 2.3 в зависимости от различных уровней электрификации быта, а на стадии рабочего проектирования нагрузки уточняются по приведенной выше формуле.


В табл. 2.3 при определении удельных нагрузок приняты следующие мощности электроприемников, кВт: освещение 2,8, розеточная сеть 2,8, электроплиты 9-10,5, стиральная машина 2,2, посудомоечная машина 2,2, джакузи с подогревом 2,5, душевая кабина с подогревом 3, водонагреватель аккумуляционный 2, водонагреватель проточный 8-18, кондиционеры 3, бытовые электроприборы 4, теплые полы 1.


Таблица 2.3 Ориентировочные удельные нагрузки для домов I категории

Ориентировочные удельные нагрузки для домов I категории

Характеристика квартир

Удельная нагрузка, кВт/квартира при числе квартир

1 Дома с электроплитами до 9 кВт без саун, проточных водонагревателей и кондиционеров

600 и более

2 Дома с электроплитами до 10,5 кВт:

2.1 Без саун и проточных водонагревателей

водонагревателями мощностью до 12 кВт

2.2 Без саун, но с проточными

2.3 Без саун, но с проточными водонагревателями мощностью до 18 кВт

2.4 С саунами мощностью до 12 кВт, без проточных водонагревателей

2.5 С саунами мощностью до 6 кВт и проточными водонагревателями мощностью до 8 кВт

2.6 С саунами мощностью до 12 кВт и проточными водонагревателями мощностью до 12 кВт


Необходимо пояснить, что главной целью разработчиков указанных Нормативов и Инструкции было определение усредненных расчетных нагрузок, приведенных к вводу в жилые здания или коттеджные поселки исходя из принятых за базу исходных данных.


В СП31-110-2003 расчетную нагрузку для квартир с повышенной комфортностью рекомендуется определять в соответствии с заданием на проектирование или в соответствии с заявленной мощностью и коэффициентами спроса и одновременности.


Коэффициенты спроса для квартиры повышенной комфортности:


Заявленная мощность, кВт До 14 20 30 40 50 60 70 и более


Коэффициент спроса 0,8 0,65 0,6 0,55 0,5 0,48 0,45


Коэффициенты одновременности Ко для квартиры повышенной комфортно сти:


Число квартир 1-5 6 9 12 15 18


Коэффициент одновременности. . . 1 0,51 0,38 0,32 0,29 0,26


Число квартир 24 40 60 100 200 400 600 и более


Коэффициент одновременности. . . . 0,24 0,2 0,18 0,16 0,14 0,13 0,11



Расчетная нагрузка питающих линий, вводов и на шинах РУ-0,4 кВ ТП от электроприемников квартир повышенной комфортности Рр.кв кВт определяется по формуле:




где Ркв - нагрузка электроприемников квартир повышенной комфортности; n - число квартир; Ко - коэффициент одновременности для квартир повышенной комфортности.


В СП31-106-2002 для одноквартирных жилых домов расчетную нагрузку в случаях, если нет ограничений, также рекомендуется определять по заданию заказчика. Однако при ограничении возможностей энергоснабжения расчетную нагрузку электроприемников следует принимать не менее:


5,5 кВт - для домов без электрических плит;


8,8 кВт - для домов с электрическими плитами.


Если же общая площадь дома превышает 60 м2, расчетная нагрузка должна быть увеличена на 1% на каждый дополнительный 1 м2.


В реальных случаях площади квартир повышенной комфортности и коттеджей существенно отличаются от базовых и не имеют верхнего ограничения уровня электрификации быта.


Каждая отдельно взятая квартира или коттедж с приусадебными постройками представляет собой свой микромир, заполняемый не усредненными, а фактическими потребителями электроэнергии, номинальная мощность которых может существенно отличаться от принятых в нормативных материалах.


В удельных расчетных нагрузках принципиально не могло учитываться использование заказчиком различных, все более совершенных потребителей с длительным режимом работы (более 30 мин), постоянно появляющихся на рынке комфортности жилья и быта людей.


В табл. 2.4, составленной по данным нормативных документов, результатам анализа большого количества проектов, паспортным данным бытовых электроприборов, приведены рекомендуемые величины мощностей отдельных электроприемников и расчетные коэффициенты.


Определение расчетной величины Рр.р нагрузки групповых и питающих линий от электроприемников, подключаемых к розеткам, предполагается выполнять по рекомендации, приведенной в СП31-110-2003 для общежитий, по формуле:




где Руд - удельная мощность на одну розетку, при числе розеток до 100 принимаемая 0,1, свыше 100 - 0,06 кВт;


nр - число розеток;


Ко.р - коэффициент одновременности для сети розеток, определяемый в зависимости от числа



До 10 розеток. . . .1,0


Свыше 10 до 20 розеток. . . .0,9


Свыше 20 до 50 розеток. . . .0,8


Свыше 50 до 100 розеток. . . .0,7


Свыше 100 до 200 розеток. . .0,6


Свыше 200 до 400 розеток. . .0,5


Свыше 400 до 600 розеток. . .0,4


Свыше 650 розеток. . . .0,35


Основными расчетными коэффициентами являются: коэффициент спроса Кс, коэффициент использования Ки и коэффициент мощности cosф.


Под коэффициентом спроса по нагрузке понимается отношение расчетной электрической нагрузки к номинальной (установленной) мощности электроприемников:



где Рр - расчетная электрическая нагрузка, кВт (30-мин максимум); Ру - установленная мощность электроприемников, кВт.



Рекомендуемые величины мощностей отдельных электроприемников и расчетных коэффициентов

Наименование

электроприемников

Номинальная или установленная активная мощность

Расчетные коэффициенты

Примечание

Спроса Кс

использования Ки

Электрическое освещение гостиных

Светильники с лампами накаливания

Электрическое освещение жилых комнат (спален)

Электрическое освещение кабинетов, библиотек, игровых и т.п.

Электрическое освещение кухонь

Электрическое освещение холлов, коридоров и т.п.

Бытовая розеточная сеть (телерадиоаппаратура, холодильники, пылесосы, утюги, торшеры, бра, настольные лампы и пр.)

100 Вт/розетка

1 розетка на 6 м2 общей площади

Ки=0,7 - при числе розеток более 50;

Ки=0,8 - при числе розеток от 20 до 50;

Ки=0,9 - при числе розеток от 10 до 20;

Ки=1 - при числе розеток до 10

Электроплита

10,5 кВт/ппита

Стиральная машина

Посудомоечная машина

Джакузи с подогревом

Душевая кабина с подогревом

Водонагреватели аккумуляционные

Водонагреватели проточные

Кондиционеры

Электрокамины

Кухонные комбайны, кофеварки, электрочайники и т.п. (суммарно)

4-5 кВт/квартира

Теплый пол в жилой комнате, кухне, прихожей

Теплый пол в ванной, сауне, детской

Электрические отопительные котлы

Приборы электроотопления

Т епловентиляторы

Электрокалориферы

Газонокосилки

Погружные насосы

Персональные компьютеры

Под коэффициентом использования активной мощности одного или группы электроприемников понимается отношение фактически потребляемой мощности Р к номинальной мощности Рн:



Таблица 2.5 Исходные данные к примеру


Помещения

Площадь, м2

Устанавливаемые электробытовые приборы

Номинальная (установленная) мощность, кВт

Примечание

Электрическая плита

Табл. 2.4 п. 7

Посудомоечная машина

Табл. 2.4 п. 9

Холодильник

По паспортным данным

Кухонный комбайн

Табл. 2.4 п. 17

Электрическое освещение

Табл. 2.4 п. 4

1 розетка на ток 16 А, 4 розетки на ток 6 А

Табл. 2.4 п. 6

Холл и коридоры

Электрическое освещение

Табл. 2.4 п. 5

6 розеток на ток 6 А

Табл. 2.4 п. 6

Табл. 2.4 п. 11

Душ с электроподогревом

Табл. 2.4 п. 12

Теплый пол (4 м2)

Табл. 2.4 п. 19

Вентилятор

По паспортным данным

Электрическое освещение

Табл. 2.4 п. 5

4 розетки на ток 6 А

Табл. 2.4 п. 6

Душ с электроподогревом

Табл. 2.4 п. 12

Теплый пол (4 м2)

Табл. 2.4 п. 19

Вентилятор

По паспортным данным

Стиральная машина

Табл. 2.4 п. 8

Электрическое освещение

Табл. 2.4 п. 5

2 розетки на ток 6 А

Табл. 2.4 п. 6

Гостиная

Электрокамин

Табл. 2.4 п. 16

Кондиционер

Табл. 2.4 п. 15

Домашний кинотеатр

По паспортным данным

Электрическое освещение

Табл. 2.4 п. 1

10 розеток на ток 6 А

Табл. 2.4 п. 6

Спальня 1

Теплый пол (12 м2)

Табл. 2.4 п. 18

Кондиционер

Табл. 2.4 п. 15

Электрическое освещение

Табл. 2.4 п. 2

4 розетки на ток 6 А

Табл. 2.4 п. 6

Спальня 2

Теплый пол (10 м2)

Табл. 2.4 п. 18

Кондиционер

Табл. 2.4 п. 15

Электрическое освещение

Табл. 2.4 п. 2

4 розетки на ток 6 А

Табл. 2.4 п. 6

Детская комната

Теплый пол (20 м2)

Табл. 2.4 п. 18

Кондиционер

Табл. 2.4 п. 15

Персональный компьютер

Табл. 2.4 п. 26

Электрическое освещение

Табл. 2.4 п. 3

4 розетки на ток 6 А

Табл. 2.4 п. 6

Кондиционер

Табл. 2.4 п. 15

Персональный компьютер

Табл. 2.4 п. 26

Электрическое освещение

Табл. 2.4 п. 3

4 розетки на ток 6 А

Табл. 2.4 п. 6



В практических случаях, для ряда потребителей, таких как электроприемники розеточной сети и электрическое освещение коэффициент использования совпадает с коэффициентом одновременности Ко для этой группы потребителей.



Исходные данные:


Квартира общей площадью 200 м2 в многоквартирном доме. В квартире 5 комнат, кухня,


2 ванные комнаты, холл и коридоры. В табл. 2.5 приведены исходные данные по установленному бытовому электрооборудованию. Все потребители, за исключением электроплиты - однофазные.


Расчет нагрузок.


На основании данных табл. 2.5 составляем расчетную таблицу табл. 2.6, в которую включены расчетные коэффициенты спроса и использования, принятые по табл. 2.4.


Коэффициенты мощности приняты по данным, приведенным в §1.3.


В табл. 2.6 установленные мощности однотипных электроприемников (например, электрическое освещение, бытовая розеточная сеть, вентиляторы, теплые полы) просуммированы..


Таблица 2.6 Расчетная таблица к примеру №1


Наименование групп электропотребителей или отдельных электроприемников

Установленная (номинальная) мощность, кВт

Расчетные коэффициенты

Расчетная мощность

Примечание

спросаКс

использования Ки

мощности

cosф/tgф

активная

полная

Электрическое освещение

Приняты везде лампы накаливания

Бытовая розеточная сеть

Электрическая плита

Посудомоечная машина

Холодильник

Кухонный комбайн

Кондиционеры

Стиральная машина

Теплые полы

Душ с электроподогревом

Вентиляторы

Электрокамин

Домашний кинотеатр

Персональные компьютеры

Расчетную активную мощность (кВт) каждой группы электроприемников определяют по формуле




Полная мощность каждой группы электроприемников, кВ*А:






Учитывая, что все нагрузки, кроме электроплиты, однофазные, а питающая сеть трехфазная, пренебрегая неравномерностью загрузки фаз, на вводе в квартиру получим расчетный ток:



Выбираем для установки на вводе в квартиру автоматический выключатель трехфазный, четырехполюсный на номинальный ток 63 А.


В табл. 2.7 и 2.8 приведены рекомендуемые величины мощностей электропотребителей элитных квартир, коттеджей и отдельных построек на приусадебных участках. Рекомендуемые величины определены на основании анализа большого количества проектов, выполненных за последние годы.


В табл. 2.7 и 2.8 под установленной мощностью подразумевается суммарная мощность потребителей, длительность включения которых обычно превышает 1 час. Потребители эпизодического пользования учтены в суммарной мощности розеточной сети. В расчетной мощности учтены снижающие коэффициенты для отдельных потребителей и общий коэффициент 0,8, учитывающий одновременную работу всех потребителей.



Рекомендуемые мощности электропотребителей элитных квартир

Общая площадь элитной квартиры, м2

Плита

Примечание

установленная

расчетная

Кухня, гостиная, спальня, детская, санузел, холл

Электрическая

Кухня, гостиная, 2 спальни, детская, 2 санузла, холл

Электрическая

Кухня, гостиная, 2 спальни, 2 санузла, джакузи, детская, библиотека, холл

Электрическая

Кухня, гостиная, 2 спальни, 2

санузла, джакузи, детская, библиотека, зимний сад, холл

Электрическая

Рекомендуемые мощности электропотребителей коттеджей и отдельных построек на приусадебных участках

Общая площадь коттеджа или отдельных построек на участке, м2

Плита,

обогрев

Примечание

Установленная

Расчетная

Коттедж 150

Электроотопление, водонагреватели, погружной насос, теплые полы

Электрическая

Коттедж 250

Электрокотел, водонагреватели, погружной насос, теплые полы

Электрическая

Коттедж 300

Электрическая

Коттедж 400

Электрическая

Коттедж 500

Электрическая

Коттедж 600

Электрическая

Гостевой дом 100

Электрическая

Дровяная

Электроотопление, водонагреватели, теплые полы

Электрическая

Гараж на два автомобиля 40

Теплица с электроподогревом

Электрическое освещение территории и художественная подсветка

Площадь участка 0,2 га

2.2. Расчет токов короткого замыкания

Расчеты токов короткого замыкания (КЗ) выполняются для:


Выбора и проверки электрооборудования по электродинамической и термической стойкости;


Определения уставок и обеспечения селективности срабатывания защиты на вводах в квартиру или коттедж.


Это в первую очередь относится к выбору автоматических выключателей.


Основными документами, регламентирующими порядок расчета токов короткого замыкания, являются:


ГОСТ 28249-93 "Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ;


Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования - РД 153-34.0-20.527-98 РАО ЕЭС России, (2002 г.).


Различные методики расчетов токов КЗ достаточно подробно отражены в технической литературе. В настоящей работе, на основании опубликованных материалов, приведены только те данные, которые необходимы для расчетов токов КЗ при выполнении проектов электроснабжения элитного жилища, и, в первую очередь, для электроснабжения усадьб и коттеджей.


При расчетах токов КЗ в электроустановках до 1 кВ необходимо учитывать активные и индуктивные сопротивления всех элементов короткозамкнутого контура, включая силовые трансформаторы, трансформаторы тока, реакторы, токовые катушки автоматических выключателей и проводники. Необходимо также учитывать:


Изменение активного сопротивления проводников в короткозамкнутой цепи вследствие их нагрева при коротком замыкании;


Сопротивление электрической дуги в месте короткого замыкания.


При составлении эквивалентных схем замещения параметры элементов исходной расчетной схемы следует приводить к ступени напряжения сети, на которой находится точка КЗ.


При расчетах токов КЗ допускается:


Максимально упрощать всю внешнюю сеть по отношению к месту КЗ, представив ее системой бесконечной мощности с нулевым сопротивлением;


Принимать коэффициенты трансформации трансформаторов равными отношению средних номинальных напряжений тех ступеней напряжения, которые связывают трансформаторы. Значения средних номинальных напряжений: 10,5; 6,3; 0,4; 0,23 кВ.


В электроустановках, получающих питание непосредственно от сети энергосистемы, принято считать, что понижающие трансформаторы подключены к источнику неизменного по амплитуде напряжения через эквивалентное индуктивное сопротивление системы. Значение этого сопротивления (хс), приведенное к ступени низшего напряжения сети, рассчитываются по формуле (мОм)




где Uср.н.н - среднее номинальное напряжение сети, подключенной к обмотке низшего напряжения трансформатора, В;


Uсрв.н - среднее номинальное напряжение сети, к которой подключена обмотка высшего напряжения трансформатора, В;


Iкв.н = In0.в.н - действующее значение периодической составляющей тока при трехфазном КЗ у выводов обмотки высшего напряжения трансформатора, кА;


Sк - условная мощность короткого замыкания у выводов обмотки высшего напряжения трансформатора, МВ^А.


При отсутствии указанных данных эквивалентное индуктивное сопротивление системы допускается рассчитывать по формуле (мОм):



где Iот.ном - номинальный ток отключения выключателя, установленного на стороне высшего напряжения понижающего трансформатора, кА.


В случаях, когда понижающий трансформатор подключен к сети энергосистемы через реактор, воздушную или кабельную линию (длиной более 1 км), необходимо учитывать не только индуктивные, но и активные сопротивления этих элементов.


Расчеты токов КЗ в электроустановках напряжением до 1 кВ рекомендуется производить в именованных единицах.


Активное и индуктивное сопротивления понижающего трансформатора (RT, XT) приведенное к ступени низшего напряжения сети, рассчитывается по формулам, мОм:




где Sт.ном - номинальная мощность трансформатора, кВ*А; Рк.з - потери короткого замыкания в трансформаторе, кВт; Uн.н.ном - номинальное напряжение обмотки низшего напряжения трансформатора, кВ; Uк - напряжение короткого замыкания трансформатора, %.


В табл. 2.9 приведены активные и индуктивные сопротивления трансформаторов, приведенные к напряжению 0,4 кВ.


Таблица 2.9 Сопротивление понижающих трансформаторов с вторичным напряжением 0,4 кВ


Сопротивление понижающих трансформаторов с вторичным напряжением 0,4 кВ

Номинальная

мощность,

соединения

Напряжение короткого

замыкания

Сопротивления, мОм

прямой последовательности

нулевой последовательности

току однофазного КЗ

активное

индуктивное

активное

индуктивное

активное

индуктивное



где R0ш и Х0ш - удельное активное и реактивное сопротивление шинопровода, Ом/м;


lш - длина шинопровода, м.


Сопротивления комплектных шинопроводов заводского изготовления типов ШРА и ШМА приведены в табл.2.10.


Таблица 2.10 Значения сопротивлений комплектных шинопроводов


Значения сопротивлений комплектных шинопроводов

шинопровода

Номинальный ток, А

Сопротивление фазы, мОм/м

Сопротивление нулевого проводника, мОм/м

активное

индуктивное

активное

индуктивное

При отсутствии данных сопротивление шинопровода от трансформатора к автоматическому выключателю можно принять ориентировочно: Rш = 0,5 мОм, Хш = 0,25 мОм.


Активное и индуктивное сопротивления воздушных линий (ВЛ):


Активное сопротивление (Ом)



где р - удельное сопротивление материала провода, для меди р = 0,0178 Ом*мм2/м, для алюминия р = 0,0294.


l - длина линии, м;


S - сечение провода, мм2.


Индуктивное сопротивление на фазу (мОм/м) определяется по формуле:




где а - расстояние между проводниками, мм;


dпp - диаметр проводника, мм.


Активное и индуктивное сопротивления кабелей с алюминиевыми и медными жилами приведены в табл. 2.11-2.14, воздушных линий - в табл. 2.15.


Индуктивное сопротивление петли фаза-нуль (мОм/м) при фазном и нулевом проводниках выполненных из круглых проводов одинакового сечения и проложенных параллельно, определяется по формуле:




Сопротивления петли фаза-нуль без учета заземляющих устройств приведены в табл. 2.16, полные сопротивления петли фаза-нуль воздушных линий и кабелей приведены в табл. 2.17.


Активные и индуктивные сопротивления аппаратов, устанавливаемых в сетях напряжением до 1 кВ приведены в табл. 2.18 и 2.19. Приведенные значения сопротивлений автоматических выключателей включают в себя сопротивления токовых катушек расцепителей и переходные сопротивления подвижных контактов.


Таблица 2.11 Активные и индуктивные сопротивления кабеля с алюминиевыми жилами в непроводящей оболочке

Активные и индуктивные сопротивления кабеля с алюминиевыми жилами в непроводящей оболочке

Сечение кабеля,

Сопротивление трех и четырехжильного кабеля в непроводящей оболочке, мОм/м

Прямая последовательность

Нулевая последовательность

Следует учитывать, что каждый автомат включается в цепь последовательно через два разъемных контакта. Для приближенного учета переходного сопротивления электрических контактов принимают: Rк = 0,1 мОм - для контактных соединений кабелей; Rк = 0,01 мОм - для шинопроводов; Rк - 1,0 мОм - для коммутационных аппаратов.


Ниже приведены переходные активные сопротивления неподвижных контактных соединений, мОм:


Таблица 2.12 Активные и индуктивные сопротивления кабеля с алюминиевыми жилами в алюминиевой оболочке

Сечение кабеля,

Сопротивление трех и четырехжильного кабеля в алюминиевой оболочке, мОм/м

Прямая последовательность

Нулевая последовательность

Таблица 2.13 Активные и индуктивные сопротивления кабеля с алюминиевыми жилами в свинцовой оболочке


Активные и индуктивные сопротивления кабеля с алюминиевыми жилами в свинцовой оболочке

Сечение кабеля,

Сопротивление трех и четырехжильного кабеля в свинцовой оболочке, мОм/м

Прямая последовательность

Нулевая последовательность

Таблица 2.14 Активные и индуктивные сопротивления кабеля с медными жилами в стальной оболочке


Активные и индуктивные сопротивления кабеля с медными жилами в стальной оболочке

Сечение кабеля,

Прямая последовательность

Нулевая последовательность

При расчетах токов КЗ учитываются активное и индуктивное сопротивления первичных обмоток всех многовитковых измерительных трансформаторов тока (Кт.а, Хта), которые имеются в цепи КЗ. Параметры некоторых многовитковых трансформаторов тока приведены в табл. 2.19. Активным и индуктивным сопротивлением одновитковых трансформаторов (на токи более 500 А) при расчетах токов КЗ можно пренебречь.


Активное сопротивление дуги приведено в табл. 2.20.


Рассмотрим принципы расчета токов трехфазного и однофазного короткого замыкания. Под трехфазным КЗ подразумевается короткое замыкание между тремя фазами в электрической системе. Под однофазным КЗ подразумевается короткое замыкание на землю силовых элементов в трехфазной электрической системе с глухозаземленной нейтралью, при котором с землей соединяется только одна фаза.


Расчет токов трехфазного КЗ заключается в определении:


Начального действующего значения периодической составляющей тока КЗ;


Апериодической составляющей тока КЗ в начальный и произвольный момент времени;


Ударного тока КЗ.


При питании потребителя от энергосистемы через понижающий трансформатор начальное действующее значение периодической составляющей тока КЗ (7к0) без учета подпитки от электродвигателей рассчитывается по формуле (кА)




где Uср.н.н - среднее номинальное напряжение сети, в которой произошло КЗ, В;


- полное сопротивление цепи КЗ, мОм;


х1кз - суммарное активное и индуктивное сопротивления прямой последовательности цепи КЗ, равные соответственно



где хc - эквивалентное индуктивное сопротивление системы до понижающего трансформатора, приведенное к ступени низшего напряжения, мОм;


гт и хт - активное и индуктивное сопротивления прямой последовательности понижающего трансформатора, мОм;


rр и хр - активное и индуктивное сопротивления реакторов, мОм (по данным завода изготовителя);


rтт и хтт - активное и индуктивное сопротивления первичных обмоток трансформатора тока, Ом; гАВ и хАВ - активное и индуктивное сопротивления автоматических выключателей, мОм, ключая сопротивления токовых катушек расцепителей и переходные сопротивления подвижных контактов;


гш и хш - активное и индуктивное сопротивления шинопроводов, мОм;


rк - суммарное активное сопротивление различных контактов, мОм;


гкб,гвл, и хкб, хвл - активные и индуктивные сопротивления кабельных и воздушных линий, мОм; rД - активное сопротивление дуги в месте КЗ, мОм.


Таблица 2.15 Активное и индуктивное сопротивление проводов воздушных линий и кабелей (на напряжение до 500 В)


Активное и индуктивное сопротивление проводов воздушных линий и кабелей (на напряжение до 500 В)

Сопротивление, мОм/м

активное

индуктивное

алюминий

провода, открыто проложенные

с поясной бумажной изоляцией

провода в трубах, кабели с резиновой и ПВХ изоляцией

Таблица 2.16 Значения сопротивления петли фаза-нуль без учета заземляющих устройств


Значения сопротивления петли фаза-нуль без учета заземляющих устройств

Сечение фазного провода, мм2

Активное (числитель) и индуктивное (знаменатель) сопротивление петли, мОм, при сечении нулевого провода, мм2

Таблица 2.17 Полные сопротивления петли фаза-нуль воздушных линий и кабелей, мОм/м


Полные сопротивления петли фаза-нуль воздушных линий и кабелей, мОм/м

Сечение провода, мм2

Кабель или провод

Провода на роликах и изоляторах

Провода воздушных линий

обратного

алюминиевый

алюминиевые

алюминиевые

Таблица 2.18 Сопротивления включения токовых катушек ресцепителей и переходные сопротивления подвижных контактов автоматических выключателей и разъемных контактов рубильников


Сопротивления включения токовых катушек ресцепителей и переходные сопротивления подвижных контактов автоматических выключателей и разъемных контактов рубильников

Номинальный ток, А

Сопротивления автоматических выключателей при 65 С, мОм

Сопротивление разъемных контактов рубильников, мОм

активное

индуктивное

Таблица 2.19 Сопротивление первичных обмоток многовитковых трансформаторов тока


Сопротивление первичных обмоток многовитковых трансформаторов тока

Коэффициент трансформации трансформатора тока

Сопротивление, мОм,

первичных обмоток многовитковых трансформаторов тока класса точности

Таблица 2.20 Значении активного сопротивления дуги


Апериодическая составляющая тока КЗ равна амплитуде периодической составляющей тока в начальный момент КЗ, т.е.:



Апериодическая составляющая тока КЗ в произвольный момент времени определяется по формуле:




где t - время, с;


Та - постоянная времени затухания апериодической составляющей тока КЗ, с, равная




где ХЕ и RE - результирующие индуктивное и активное сопротивления цепи КЗ, мОм; юс - синхронная угловая частота напряжение сети, рад/с.


Ударный ток трехфазного КЗ в электроустановках с одним источником энергии (энергосистема или автономный источник) рассчитываются по формуле:



где - ударный коэффициент, определяемый по кривым, приведенным на






Рис. 2.1


Та - постоянная времени затухания


апериодической составляющей тока КЗ;







Пример расчета трехфазного КЗ


Определить ток КЗ на вводе в дом (коттедж).


Поселок питается от распределительного пункта (РП) энергосистемы по ВЛ-10 кВ через трансформатор 10/0,4 кВ, мощностью 400 кВ*А.


Электроснабжение коттеджа осуществляется кабельной линией 0,4 кВ длиной 300 м.


Кабель с медными жилами сечением 4х50 мм2 (рис. 2.2).


Мощность КЗ на шинах РП-10 Sк.з=200 МВ*А.


Расчетная схема и схема замещения представлены на рис. 2.3.


Учитывая, что длина линии 10 кВ от РП 10 кВ системы до трансформаторной подстанции менее 1 км, то в соответствии с ГОСТ 28249-93 в расчетах токов КЗ линия может не учитывается.




Рис. 2.2





Рис. 2.3

Определение сопротивлений схемы замещения


Сопротивление системы:




Сопротивление трансформатора 400 кВА (табл. 2.9):



Переходное сопротивление электрических контактов (см. ГОСТ 28249-93 п.2.5), Rк = 0,1 мОм;


Сопротивление автоматических выключателей (табл. 2.18)



Сопротивление трансформатора тока 300/5А 1 (см. табл. 2.19)



Сопротивление КЛ-0,4 кВ, сечением 4x50, длиной 300 м (табл. 2.14)



Сопротивление контура КЗ:


активное:



реактивное:



Полное сопротивление цепи КЗ:



Начальное значение периодической составляющей тока трехфазного КЗ:




Апериодическая составляющая тока КЗ в начальный момент КЗ:



где Iа0 - наибольшее начальное значение апериодической составляющей тока КЗ.


Апериодическая составляющая в произвольный момент времени t рассчитывается по формуле:




где t - время, с


Та- постоянная времени затухания апериодической составляющей тока КЗ;



в нашем случае




апериодическая составляющая затухает примерно через 0,002 с и ее можно не учитывать.


Ударный ток КЗ:



где куд. = 1 - по кривой на рис. 2.1 из соотношения




Расчет токов однофазных коротких замыканий в сетях до 1 кВ выполняется для обеспечения надежной работы защиты при минимальных значениях тока КЗ в конце защищаемой линии.


Расчетная точка однофазного КЗ - электрически наиболее удаленная точка участка сети, защищаемая выключателем.


В соответствии с требованиями "Правил устройства электроустановок” (ПУЭ) для надежного отключения поврежденного участка сети наименьший расчетный ток короткого замыкания должен превышать номинальный ток плавкой вставки или номинальный ток расцепителя автоматического выключателя, защищающего этот участок сети, с обратнозависимой от тока характеристикой не менее чем в 3 раза.


Если автоматический выключатель имеет только мгновенно действующий расцепитель (отсечку), то наименьший расчетный ток короткого замыкания должен превышать уставку отсечки не менее чем в 1,4 раза.


По сравнению с расчетом токов трехфазных КЗ, расчет токов однофазных КЗ является более сложным, т.к. в этом случае помимо учета сопротивления в прямой цепи короткого замыкания (в фазе) необходим учет сопротивления и в цепи зануления (в обратной цепи). Когда для зануления используются стальные трубы, обрамления кабельных каналов и другие строительные конструкции, в решении вопроса о сопротивлении цепи короткого замыкания появляется много неопределенностей.


Кроме того, однофазные короткие замыкания относятся к несимметричным, что вносит в расчет дополнительные сложности.


Расчет токов однофазных КЗ можно выполнять методом симметричных составляющих или по сопротивлению петли фаза-нуль.


Метод симметричных составляющих предложен для упрощения расчетов несимметричных КЗ. Сущность этого метода состоит в замене несимметричной системы токов трехфазной сети при однофазном коротком замыкании тремя симметричными системами: прямой, обратной и нулевой последовательности. Симметричные системы являются достаточно простыми для теоретического расчета. При практическом использовании этого метода часто возникают затруднения из-за отсутствия справочных материалов по сопротивлениям нулевой последовательности для принятого варианта выполнения цепи зануления.


При расчете токов однофазного КЗ по сопротивлению петли фаза-нуль используется закон Ома, но встречаются те же затруднения с исходными данными.


Оба метода должны давать один и тот же результат и теоретически могут быть выведены один из другого. Точность расчета определяется только точность исходных данных.


В ГОСТ 28249-93 в основу расчета токов однофазных КЗ положен метод симметричных составляющих, который более подробно рассматривается ниже.


Расчет однофазного КЗ методом симметричных составляющих производят по формуле:




где I1 - действующее значение периодической составляющей тока однофазного КЗ, кА;


Uл - среднее номинальное (линейное) напряжение сети, В;


R1E - суммарное активное сопротивление фазной цепи короткого замыкания (сопротивление прямой последовательности), мОм;


R0E - суммарное активное сопротивление цепи КЗ для тока нулевой последовательности (сопротивление нулевой последовательности), мОм;


Х1E - суммарное индуктивное сопротивление фазной цепи короткого замыкания (сопротивление прямой последовательности), мОм;


Х0E - суммарное индуктивное сопротивление цепи КЗ для тока нулевой последовательности (сопротивление нулевой последовательности), мОм.


Сопротивления обратной последовательности равны сопротивлениям прямой последовательности и в приведенной формуле учитываются коэффициентом 2 перед R1E и Х1Е.


Суммарное активное и суммарное индуктивное сопротивления фазной цепи короткого замыкания определяются по формулам:




где r1Т и Х1Т - сопротивления прямой последовательности понижающего трансформатора, мОм;


r1Л и Х1Л - сопротивления прямой последовательности линии (фазного проводника), мОм;


rТТ и ХТТ - сопротивления первичных обмоток трансформаторов тока, мОм;


rА и ХА - сопротивления автоматических выключателей, мОм;


rК - суммарное активное сопротивление различных контактов в фазной цепи КЗ, мОм;


rД - активное сопротивление электрической дуги в месте КЗ, мОм.


Суммарное активное и суммарное индуктивное сопротивления цепи КЗ для тока нулевой последовательности определяются по формулам:




где r0Т и Х0Т - сопротивления нулевой последовательности понижающего трансформатора, мОм; r0Л и Х0Л - сопротивление нулевой последовательности линии (сопротивления шинопроводов, проводов, кабелей с учетом цепи зануления), мОм;


rТТ, ХТТ, rА, ХА, rК и rД - сопротивления фазной цепи КЗ, мОм.


Сопротивление нулевой последовательности линии равно сопротивлению фазного проводника плюс утроенное сопротивление цепи зануления:



где rН и ХН - эквивалентные сопротивления цепи зануления (нуля) от точки КЗ до трансформатора с учетом всех зануляющих элементов (нулевого провода, оболочки кабеля, стальных труб и т.д.), мОм.


Увеличение в 3 раза сопротивления цепи зануления для тока нулевой последовательности поврежденной фазы вызвано тем, что в соответствии с методом симметричных составляющих через цепь зануления замыкаются равные по значению токи нулевой последовательности всех трех фаз. Таким образом:



При определении минимальных значений токов однофазных КЗ для проверки чувствительности защиты рекомендуется учитывать увеличение активного сопротивления проводников в результате нагревания их током короткого замыкания. Для этого сопротивления проводников сечением до 16 мм2 (включительно) рекомендуется приводить к температуре 1200С, сопротивления проводников сечением 25-95 мм2 - к температуре 1450С, сопротивления проводников сечением 120-140 мм2 - к температуре 950С. Такие (ориентировочные) значения температуры проводников в конце КЗ получены в результате расчетов с учетом реальных время-токовых характеристик аппаратов защиты и при условии адиабатического процесса нагрева жил проводников. Государственным стандартом ГОСТ 2824+-89 допускается принимать для всех сечений значение температурного коэффициента электрического сопротивления равным 1,5, что соответствует температуре 1450С. Но проводники крупных сечений до такой температуры за время КЗ практически не нагреваются.


Температурный коэффициент для приведения сопротивления проводника при 200С к сопротивлению при конечной температуре вычисляется по формуле:



где Oкон. - температура жилы проводника в конце КЗ, 0С.


Сопротивление проводника при конечной температуре




где r20 - сопротивление проводника при температуре 20 0С.

Пример расчета тока однофазного КЗ.


Для схемы по рис. 2.2 определить ток однофазного КЗ на вводе в коттедж.


Расчет проводим методом симметричных составляющих.


При питании электроустановки от системы через понижающий трансформатор начальное значение периодической составляющей тока однофазного КЗ рассчитывается по формуле (кА):




где r1E , х1E - активное и индуктивное суммарные сопротивления прямой последовательности относительно точки КЗ. В нашем случае (см. расчет трехфазного КЗ) - r1E =137,5 мОм, X1Е =45,4 мОм;


r0E , XOE. - активное и индуктивное суммарные сопротивления нулевой последовательности относительно точки КЗ.


Эти сопротивления равны:




где r0Т, X0Т - активное и индуктивное сопротивления нулевой последовательности понижающего трансформатора;


rТТ, XТТ - активное и индуктивное сопротивления трансформатора тока;


rкв, ХКВ - активное и индуктивное сопротивления автоматических выключателей;


гК - сопротивление контактов.


Для рассматриваемого примера:




По табл. 2.9 сопротивления нулевой последовательности трансформатора 400 кВА составляют: Х0Т = 149 мОм, r0Т = 55,6 мОм.





где r’0 и x’0 - активное и индуктивное сопротивления 1 м медного кабеля сечением 4x50 мм2 (табл. 2.14);


Таким образом:






Нормальным установившимся режимом работы электроустановки считается такой режим, параметры которого находятся в пределах нормы. Ток короткого замыкания (ток КЗ) возникает при аварии в работе электроустановки. Он чаще всего появляется из-за повреждения изоляции токоведущих частей.

В результате короткого замыкания нарушается бесперебойное питание потребителей, и влечет за собой неисправности и выход из строя оборудования. Вследствие этого при подборе токоведущих элементов и аппаратов необходимо производить их расчет не только для нормальной работы, но и производить проверку по условиям предполагаемого аварийного режима, который может быть вызван коротким замыканием.

Причины повреждения изоляции

  • Воздействие на изоляцию механическим путем.
  • Электрический пробой токоведущих частей вследствие чрезмерных нагрузок или перенапряжения.
  • Подобно нарушению изоляции можно считать причиной повреждения схлестывание неизолированных проводов воздушных линий от сильного ветра.
  • Наброс металлических предметов на линию.
  • Воздействие животных на проводники, находящиеся под напряжением.
  • Ошибки в работе обслуживающего персонала в электроустановках.
  • Сбой в функционировании защит и автоматики.
  • Техническое старение оборудования.
  • Умышленное действие, направленное на повреждение изоляции.

Последствия короткого замыкания

Ток короткого замыкания во много раз превышает ток при нормальной работе оборудования. Возможными последствиями такого замыкания могут быть:

  • Перегрев токоведущих частей.
  • Чрезмерные динамические нагрузки.
  • Прекращение подачи электрической энергии потребителям.
  • Нарушение нормального функционирования других взаимосвязанных приемников, которые подключены к исправным участкам цепи, из-за резкого снижения напряжения.
  • Расстройство системы электроснабжения.

Виды коротких замыканий

Понятие короткого замыкания подразумевает электрическое соединение, которое не предусмотрено условиями эксплуатации оборудования между точками различных фаз, либо нейтрального проводника с фазой или земли с фазой (при наличии контура заземления нейтрали источника питания).

При эксплуатации потребителей напряжение питания может подключаться различными способами:

  • По схеме трехфазной сети 0,4 киловольта.
  • Однофазной сетью (фазой и нолем) 220 В.
  • Источником постоянного напряжения выводами положительного и отрицательного потенциала.

В каждом отдельном случае может возникнуть нарушение изоляции в некоторых точках, вследствие чего возникает ток короткого замыкания.

Для 3-фазной сети переменного тока существуют разновидности короткого замыкания:

  1. Трехфазное замыкание.
  2. Двухфазное замыкание.
  3. Однофазное замыкание на землю.
  4. Однофазное замыкание на землю (Изолированная нейтраль).
  5. Двухфазное замыкание на землю.
  6. Трехфазное замыкание на землю.

При выполнении проекта снабжения электрической энергией предприятия или оборудования подобные режимы требуют определенных расчетов.

Принцип действия короткого замыкания

До начала возникновения короткого замыкания величина тока в электрической цепи имела установившееся значение i п. При резком коротком замыкании в этой цепи из-за сильного уменьшения общего сопротивления цепи электрический ток значительно повышается до значения i к. Вначале, когда время t равно нулю, электрический ток не может резко измениться до другого установившегося значения, так как в замкнутой цепи кроме активного сопротивления R, есть еще и индуктивное сопротивление L. Это увеличивает во времени процесс возрастания тока при переходе на новый режим.

В результате в начальный период короткого замыкания электрический ток сохраняет первоначальное значение iK = i но. Чтобы ток изменился, необходимо некоторое время. В первые мгновения этого времени ток повышается до максимального значения, далее немного снижается, а затем через определенный период времени принимает установившийся режим.

Период времени от начала замыкания до установившегося режима считается переходным процессом. Ток короткого замыкания можно рассчитать для любого момента в течение переходного процесса.

Ток КЗ при режиме перехода лучше рассматривать в виде суммы составляющих: периодического тока i пt с наибольшей периодической составляющей I пт и апериодического тока i аt (его наибольшее значение – I am).

Апериодическая составляющая тока КЗ во время замыкания постепенно затухает до нулевого значения. При этом ее изменение происходит по экспоненциальной зависимости.

Возможный максимальный ток КЗ считают ударным током i у. Когда нет затухания в начальный момент замыкания, ударный ток определяется:

I у – i п m + i а t=0 ’, где i п m является амплитудой периодической токовой составляющей.

Полезное короткое замыкание

Считается, что короткое замыкание является отрицательным и нежелательным явлением, от которого происходят разрушительные последствия в электроустановках. Оно может создать условия для пожара, отключения защитной аппаратуры, обесточиванию объектов и другим последствиям.

Однако ток короткого замыкания может принести реальную пользу на практике. Есть немало устройств, функционирующих в режиме повышенных значений тока. Для примера можно рассмотреть . Наиболее ярким примером для этого послужит электродуговая сварка, при работе которой накоротко замыкается сварочный электрод с заземляющим контуром.

Такие режимы короткого замыкания действуют кратковременно. Мощность сварочного трансформатора обеспечивает работу при таких значительных перегрузках. Во время сварки в точке соприкосновения электрода возникает очень большой ток. В итоге выделяется значительное количество теплоты, достаточное для расплавления металла в месте касания, и образования сварочного шва достаточной прочности.

Способы защиты

Еще в начале развития электротехники появилась проблема защиты электрических устройств от чрезмерных токовых нагрузок, в том числе и короткого замыкания. Наиболее простым решением стала установка , которые перегорали от их нагревания вследствие превышения тока определенной величины.

Такие плавкие вставки функционируют и в настоящее время. Их основным достоинством является надежность, простота и невысокая стоимость. Однако имеются и недостатки. Простая конструкция предохранителя побуждает человека после сгорания плавкого элемента заменить его самостоятельно подручными материалами в виде скрепок, проволочек и даже гвоздей.

Такая защита не способна обеспечить необходимой защиты от короткого замыкания, так как она не рассчитана на определенную нагрузку. На производстве для отключения цепей, в которых возникло замыкание, используют . Они намного удобнее обычных плавких предохранителей, не требуют замены сгоревшего элемента. После устранения причины замыкания и остывания тепловых элементов, автомат можно просто включить, тем самым подав напряжение в цепь.

Существуют также более сложные системы защиты в виде . Они имеют высокую стоимость. Такие устройства отключают напряжение цепи в случае наименьшей утечки тока. Такая утечка может возникнуть при поражении работника током.

Другим способом защиты от короткого замыкания является токоограничивающий реактор. Он служит для защиты цепей в сетях высокого напряжения, где величина тока КЗ способна достичь такого размера, при котором невозможно подобрать защитные устройства, выдерживающие большие электродинамические силы.

Реактор представляет собой катушку с индуктивным сопротивлением. Он подключен в цепь по последовательной схеме. При нормальной работе на реакторе имеется падение напряжения около 4%. В случае возникновения КЗ основная часть напряжения приходится на реактор. Существует несколько видов реакторов: бетонные, масляные. Каждый из них имеет свои особенности.

Закон Ома при КЗ

В основе расчета замыканий цепи лежит принцип, который определяет вычисление силы тока по напряжению, путем его деления на подключенное сопротивление. Такой же принцип работает и при определении номинальных нагрузок. Отличие в следующем:

  • При возникновении аварийного режима процесс протекает случайным образом, стихийно. Однако он поддается некоторым расчетам по разработанным специалистами методикам.
  • В процессе нормальной работы электрической цепи сопротивление и напряжение находятся в уравновешенном режиме и могут незначительно изменяться в рабочих диапазонах в пределах нормы.

Мощность источника питания

По этой мощности выполняют оценку энергетической силовой возможности разрушительного действия, которое может осуществить ток короткого замыкания, проводят анализ времени протекания, размер.

Для примера рассмотрим, что отрезок медного проводника с площадью сечения 1,5 мм 2 длиной 50 см сначала подсоединили непосредственно к батарее «Крона». А в другом случае этот же кусок провода вставили в бытовую розетку.

В случае с «Кроной» по проводнику будет протекать ток КЗ, который нагреет эту батарею до выхода ее из строя, так как мощности батареи не достаточно для того, чтобы нагреть и расплавить подключенный проводник для разрыва цепи.

В случае с бытовой розеткой сработают защитные устройства. Представим, что эти защиты вышли из строя, и не сработали. В этом случае ток короткого замыкания будет протекать по бытовой проводке, затем по проводке всего подъезда, дома, и далее по воздушной линии или кабеля. Так он дойдет до на подстанции.

В результате к трансформатору подсоединяется длинная цепь с множеством кабелей, проводов, различных соединений. Они намного повысят электрическое сопротивление нашего опытного отрезка провода. Однако даже в таком случае остается большая вероятность того, что этот кусок провода расплавится и сгорит.

Сопротивление цепи

Участок линии электропередач от источника питания до места короткого замыкания обладает некоторым электрическим сопротивлением. Его значение влияет на величину тока короткого замыкания. Обмотки трансформаторов, катушек, дросселей, пластин конденсаторов вносят свой вклад в суммарное сопротивление цепи в виде емкостных и индуктивных сопротивлений. При этом создаются апериодические составляющие, которые искажают симметричность основных форм гармонических колебаний.

Существует множество различных методик, с помощью которых производится расчет ток короткого замыкания. Они позволяют рассчитать с необходимой точностью ток короткого замыкания по имеющейся информации. Практически можно измерить сопротивление имеющейся схемы по методике «фаза-ноль». Это сопротивление делает расчет более точным, вносит соответствующие коррективы при подборе защиты от короткого замыкания.

В данной статье речь пойдет о коротком замыкании в электрических сетях. Мы рассмотрим типичные примеры коротких замыканий, способы расчетов токов короткого замыкания, обратим внимание на связь индуктивного сопротивления и номинальной мощности трансформаторов при расчете токов короткого замыкания, а также приведем конкретные несложные формулы для этих вычислений.

При проектировании электроустановок необходимо знать значения симметричных токов короткого замыкания для различных точек трехфазной цепи. Величины этих критических симметричных токов позволяют проводить расчеты параметров кабелей, распределительных устройств, и т. п.

Далее рассмотрим ток трехфазного короткого замыкания при нулевом сопротивлении, который подается через типичный распределительный понижающий трансформатор. В обычных условиях данный тип повреждений (короткое замыкание болтового соединения) оказывается наиболее опасным, при этом расчет очень прост. Простые расчеты позволяют, придерживаясь определенных правил, получить достаточно точные результаты, приемлемые для проектирования электроустановок.

Ток короткого замыкания во вторичной обмотке одного понижающего распределительного трансформатора. В первом приближении сопротивление высоковольтной цепи принимается очень малым, и им можно пренебречь, поэтому:

Здесь P – номинальная мощность в вольт-амперах, U2 – напряжение между фазами вторичной обмотки на холостом ходу, Iн - номинальный ток в амперах, Iкз - ток короткого замыкания в амперах, Uкз - напряжение при коротком замыкании в процентах.

В таблице ниже приведены типичные значения напряжений короткого замыкания для трехфазных трансформаторов на напряжение высоковольтной обмотки в 20 кВ.


Если для примера рассмотреть случай, когда несколько трансформаторов питают параллельно шину, то величину тока короткого замыкания в начале линии, присоединенной к шине, можно принять равной сумме токов короткого замыкания, которые предварительно вычисляются по отдельности для каждого из трансформаторов.

Когда все трансформаторы получают питание от одной и той же сети высокого напряжения, значения токов короткого замыкания при суммировании дадут несколько большее значение, чем окажется в реальности. Сопротивлением шин и выключателей принебрегают.

Пусть трансформатор обладает номинальной мощностью 400 кВА, напряжение вторичной обмотки 420 В, тогда если принять Uкз = 4%, то:

На рисунке ниже приведено пояснение для данного примера.

Точности полученного значения будет достаточно для расчета электроустановки.

Ток короткого трехфазного замыкания в произвольной точке установки на стороне низкого напряжения:

Здесь: U2 - напряжение на холостом ходу между фазами на вторичных обмотках трансформатора. Zт - полное сопротивление цепи, расположенной выше точки повреждения. Далее рассмотрим, как найти Zт.

Каждая часть установки, будь то сеть, силовой кабель, непосредственно трансформатор, автоматический выключатель или шина, - имеют свое полное сопротивление Z, состоящее их активного R и реактивного X.

Емкостное сопротивление здесь роли не играет. Z, R и X выражаются в омах, и при расчетах представляются как стороны прямоугольного треугольника, что показано на рисунке ниже. По правилу прямоугольного треугольника вычисляется полное сопротивление.

Сеть разделяют на отдельные участки для нахождения X и R для каждого из них, чтобы вычисление было удобным. Для последовательной цепи значения сопротивлений просто складываются, и получаются в итоге Xт и Rт. Полное сопротивление Zт определяется из теоремы Пифагора для прямоугольного треугольника по формуле:

При параллельном соединении участков расчет ведется как для параллельно соединенных резисторов, если объединенные параллельные участки обладают реактивным или активным сопротивлениями, получится эквивалентное общее сопротивление:

Xт не учитывает влияние индуктивностей, и если расположенные рядом индуктивности влияют друг на друга, то реальное индуктивное сопротивление окажется выше. Необходимо отметить, что вычисление Xз связано только к отдельной независимой цепью, то есть так же без влияния взаимной индуктивности. Если же параллельные цепи расположены близко к друг другу, то сопротивление Хз окажется заметно выше.

Рассмотрим теперь сеть, присоединенную к входу понижающего трансформатора. Трехфазный ток короткого замыкания Iкз или мощность короткого замыкания Pкз определяет поставщик электроэнергии, однако можно исходя из этих данных найти полное эквивалентное сопротивление. Полное эквивалентное сопротивление, одновременно приводящее к эквиваленту для низковольтной стороны:

Pкз - мощность трехфазного короткого замыкания, U2 – напряжение на холостом ходу низковольтной цепи.

Как правило, активная составляющая сопротивления высоковольтной сети - Rа - очень мала, и сравнительно с индуктивным сопротивлением - ничтожно мало. Традиционно принимают Xa равным 99,5% от Zа, и Ra равным 10% от Xа. В таблице ниже приведены приблизительные данные относительно этих величин для трансформаторов на 500 МВА и 250 МВА.



Когда ведут приблизительные расчеты, то пренебрегают Rтр, и принимают Zтр = Xтр.

Если требуется принять в расчет выключатель низковольтной цепи, то берется полное сопротивление выключателя, расположенного выше точки короткого замыкания. Индуктивное сопротивление принимают равным 0,00015 Ом на выключатель, а активной составляющей пренебрегают.

Что касается сборных шин, то их активное сопротивление ничтожно мало, реактивная же составляющая распределяется примерно по 0,00015 Ом на метр их длины, причем при увеличении расстояния между шинами вдвое, их реактивное сопротивление возрастает лишь на 10%. Параметры кабелей указывают их производители.

Что касается трехфазного двигателя, то в момент короткого замыкания он переходит в режим генератора, и ток короткого замыкания в обмотках оценивается как Iкз = 3,5*Iн. Для однофазных двигателей увеличением тока в момент короткого замыкания можно пренебречь.

Дуга, сопровождающая обычно короткое замыкание, обладает сопротивлением, которое отнюдь не постоянно, но среднее его значение крайне низко, однако и падение напряжения на дуге невелико, поэтому практически ток снижается примерно на 20%, что облегчает режим срабатывания автоматического выключателя, не нарушая его работу, не влияя особо на ток отключения.

Ток короткого замыкания на приемном конце линии связан с током короткого замыкания на подающем ее конце, но учитывается еще сечение и материал передающих проводов, а также их длина. Имея представление об удельном сопротивлении, каждый сможет произвести этот несложный расчет. Надеемся, что наша статья была для вас полезной.

Расчет токов короткого замыкания производится для выбора и проверки по электродинамической и термической стойкости электрических аппаратов и проводников, проектирования и настройки релейной защиты.

Источниками питания места короткого замыкания являются генераторы электростанций, энергосистемы и электродвигатели напряжением свыше 1000 В, если они связаны с местом короткого замыкания непосредственно, кабельными линиями, токопроводами или через линейные реакторы. Подпитывающее действие электродвигателей учитывается только в начальный момент короткого замыкания.

Для вычисления токов короткого замыкания составляют расчетную схему, соответствующую нормальному режиму, которая составляется на основе анализа схемы СЭС и представляет собой однолинейную электрическую схему.

На расчетной схеме указывают все источники питания и элементы сети, намечают необходимые места, в которых будет выполняться расчет токов короткого замыкания. Параметры источников питания и элементов СЭС приведены в исходных данных. Для синхронных генераторов и электродвигателей напряжением свыше 1000 В ЭДС принимают равной сверхпереходной ЭДС Е ".

В качестве примера на рис. 3.4 приведена расчетная схема для схемы электроснабжения, показанной на рис. 3.2. По расчетной схеме составляют схему замещения. При этом все электромагнитные связи между элементами схемы путем эквивалентных преобразований заменяются электрическими . Рядом с каждым элементом схемы в числителе указывается его порядковый номер n , а в знаменателе – величина сопротивления (Ом) или относительных базисных единицах, приведенных к базовой ступени. В качестве базовой ступени обычно принимают ступень трансформации, на которой рассчитывают ток короткого замыкания. Напряжение базовой ступени U б принимается равным среднему (номинальному) напряжению U н ступени трансформации в соответствии со шкалой: 230; 154; 115; 37; 10,5; 6,3 кВ.


Расчет токов короткого замыкания может производиться в физических единицах или относительных базисных единицах. При расчете тока короткого замыкания в относительных единицах за базовую мощность удобно принимать мощность, кратную 10 (например, 100 или 1000 MB×A), или мощность энергосистемы, питающей предприятие электроэнергией, или номинальную мощность какого-либо элемента СЭС. Если расчет тока короткого замыкания выполняется приближенно с помощью расчетных кривых, то базовая мощность должна быть принята равной мощности питающей энергосистемы.

Базисный модуль полного сопротивления Z б до места короткого замыкания, ток I б и мощность S б определяются по формулам:

Для трехфазных двухобмоточных трансформаторов величины активного R т и индуктивного X т сопротивлений, приведенные к обмотке высшего напряжения и используемые при расчете приведенных сопротивлений, даны в табл. П1.5. Для трехфазных трехобмоточных трансформаторов величины активных R т.в, R т.с, R т.н и индуктивных Х т.в, Х т.с, Х т.н сопротивлений обмоток высшего, среднего и низшего напряжений, необходимые для вычисления приведенных сопротивлений, указаны в работе . Индуктивные сопротивления реакторов X р приведены в работе и в табл. П1.9.

При расчёте тока короткого замыкания ЭДС всех источников принимаются совпадающими по фазе. Поэтому расчет выполняется с использованием метода наложения: ток от каждого источника питания в месте короткого замыкания рассчитывают отдельно, а затем находят результирующий ток путем арифметического суммирования составляющих от отдельных источников.

Действующее значение периодической составляющей тока трехфазного короткого замыкания в физических единицах:

· при питании от синхронного генератора или электродвигателя напряжением 1000 В:

где ; ; ; p – число последовательно соединенных активных сопротивлений от источника питания до места короткого замыкания; m – число последовательно соединенных индуктивных сопротивлений от источника питания до места короткого замыкания.

Действующее значение периодической составляющей тока трехфазного короткого замыкания в относительных базисных единицах:

· при питании от энергосистемы:

; (3.31)

· при питании от синхронного генератора или электродвигателя напряжением свыше 1000 В:

где – мощность трехфазного симметричного короткого замыкания,

; ; . (3.33)

Переход от тока и мощности короткого замыкания в относительных единицах к току и мощности в физических единицах производится по формулам:

Если < 0.3 или < 0.3, то активное сопротивление R с при расчете периодической составляющей тока трехфазного короткого замыкания не учитывается.

Периодическая составляющая тока двухфазного короткого замыкания:

Ударный ток трехфазного симметричного короткого замыкания при питании от энергосистемы:

где – ударный коэффициент.

Постоянная времени затухания апериодической составляющей тока трехфазного симметричного замыкания при питании от энергосистемы:

где f – частота питающей сети, Гц.

Импульс квадратичного тока . Температура перегрева проводника током в установившемся режиме по отношению к температуре окружающей среды определяется из уравнения теплового баланса, т.е. равенства количеств выделяемого и рассеянного тепла. Из-за кратковременности процесса КЗ отвод тепла не учитывается, так как процесс считается адиабатным. Суммарный импульс квадратичного тока КЗ (греющего тока):

где В к.п – импульс квадратичного тока от периодической составляющей тока КЗ; В к.а – импульс квадратичного тока от апериодической составляющей тока КЗ.

В общем случае:

, (3.39)

где m – число отрезков дискретного временного интервала при замене интеграла конечной суммой, ; ε – символ целой части частного ; Dt – дискретный временной интервал разбиения зависимости ; – среднее значение тока КЗ на n -м дискретном временном интервале.