Ацп регистры. Аналого-цифровой преобразователь микроконтроллеров AVR

Аналого-цифровые преобразователи (АЦП) являются устройствами, которые принимают входные аналоговые сигналы и генерируют соответствующие им цифровые сигналы, пригодные для обработки микропроцессорами и другими цифровыми устройствами. АЦП входит во многие современные модели МК AVR , он многоканальный. Обычно число каналов равно 8, но в разных моделях оно может варьировать от 4 каналов в младших моделях семейства Tiny, 6 в ATmega8, до 16 каналов в ATmega2560.

Многоканальность означает, что на входе единственного модуля АЦП установлен аналоговый мультиплексор, который может подключать этот вход к различным выводам МК для осуществления измерений нескольких независимых аналоговых величин с разнесением по времени. Входы мультиплексора могут работать по отдельности (в несимметричном режиме для измерения напряжения относительно "земли") или (в некоторых моделях) объединяться в пары для измерения дифференциальных сигналов. Иногда АЦП дополнительно снабжается усилителем напряжения с фиксированными значениями коэффициента усиления 10 и 200.

Сам АЦП представляет собой преобразователь последовательного приближения с устройством выборки-хранения и фиксированным числом тактов преобразования, равным 13 (или 14 для дифференциального входа; первое преобразование после включения потребует 25 тактов для инициализации АЦП ). Тактовая частота формируется аналогично тому, как это делается для таймеров- с помощью специального предделителя тактовой частоты МК, который может иметь коэффициенты деления от 1 до 128. Но в отличие от таймеров, выбор тактовой частоты АЦП не совсем произволен, т. к. быстродействие аналоговых компонентов ограничено. Поэтому коэффициент деления следует выбирать таким, чтобы при заданном "кварце" тактовая частота АЦП укладывалась в рекомендованный диапазон 50-200 кГц (т. е. максимум около 15 тыс. измерений в секунду). Увеличение частоты выборки допустимо, если не требуется достижение наивысшей точности преобразования.

Разрешающая способность АЦП в МК AVR - 10 двоичных разрядов, чего для большинства типовых применений достаточно. Абсолютная погрешность преобразования зависит от ряда факторов и в идеальном случае не превышает ±2 младших разрядов, что соответствует общей точности измерения примерно 8 двоичных разрядов. Для достижения этого результата необходимо принимать специальные меры: не только "вгонять" тактовую частоту в рекомендованный диапазон, но и снижать по максимуму интенсивность цифровых шумов. Для этого рекомендуется, как минимум, не использовать оставшиеся выводы того же порта, к которому подключен АЦП, для обработки цифровых сигналов, правильно разводить платы, а как максимум - дополнительно к тому еще и включать специальный режим ADC Noise Reduction .

Регистры управления АЦП

ADCSR

Режим непрерывных измерений активизируется установкой бита ADFR (бит 5) этого же регистра. В ряде моделей Mega этот бит носит наименование ADATE , и управление режимом работы производится сложнее: там добавляются несколько режимов запуска через различные прерывания (в т. ч. прерывание от компаратора, при наступлении различных событий от таймера и т. п.), и выбирать их следует, задавая биты ADTS регистра SFIOR , а установка бита ADATE разрешает запуск АЦП по этим событиям.

Разряд Название Описание
5 ADFR(ADATE) Выбор режима работы АЦП

Так как нулевые значения всех битов ADTS (по умолчанию) означают режим непрерывного преобразования, то в случае, когда вы их значения не трогали, функции битов ADATE и ADFR в других моделях будут совпадать.

ADTS2 ADTS1 ADTS0 Источник стартового сигнала
0 0 0 Режим непрерывного преобразования
0 0 1 Прерывание от аналогового компаратора
0 1 0 Внешнее прерывание INT0
0 1 1 Прерывание по событию "Совпадение" таймера/счетчика Т0
1 0 0 Прерывание по переполнению таймера/счетчика Т0
1 0 1 Прерывание по событию "Совпадение" таймера/счетчика Т1
1 1 0 Прерывание по переполнению таймера/счетчика Т1
1 1 1 Прерывание по событию "Захват" таймера/счетчика Т1

Если выбран режим запуска не от внешнего источника, то преобразование запускается установкой бита ADSС (бит 6). При непрерывном режиме установка этого бита запустит первое преобразование, затем они будут автоматически повторяться. В режиме однократного преобразования, а также независимо от установленного режима при запуске через прерывания (в тех моделях, где это возможно) установка бита ADSС просто запускает одно преобразование. При наступлении прерывания, запускающего преобразование, бит ADSС устанавливается аппаратно. Отметим, что преобразование начинается по-фронту первого тактового импульса (тактового сигнала АЦП, а не самого контроллера!) после установки ADSС . По окончании любого преобразования (и в одиночном, и в непрерывном режиме) устанавливается бит ADIF (бит 4. флаг прерывания). Разрешение прерывания АЦП осуществляется установкой бита ADIE (бит 3) все того же регистра ADCSR/ADCSRA .

Для работы с АЦП необходимо еще установить его тактовую частоту. Это делается тремя младшими битами регистра ADCSR/ADCSRA под названием ADPS0..2. Коэффициент деления частоты тактового генератора МК устанавливается по степеням двойки, все нули в этих трех битах соответствуют коэффициенту 2, все единицы - 128. Оптимальная частота преобразования лежит в диапазоне 50-200 кГц, так что, например, для тактовой частоты МК, равной 4 МГц, коэффициент может иметь значение только 32 (состояние битов ADPS0..2 = 101, частота 125 кГц) или 64 (состояние битов ADPS0..2 = 110, частота 62,5 кГц). При тактовой частоте 16 МГц в допустимый диапазон укладывается только коэффициент 128.

ADPS2 ADPS1 ADPS0 Коэффициент деления
0 0 0 2
0 0 1 2
0 1 0 4
0 1 1 8
1 0 0 16
1 0 1 32
1 1 0 64
1 1 1 128

Ниже приведена таблица с описанием регистра ADMUX.



Выборка источника опорного напряжения производится битами REFS1..0 регистра ADMUX (старшие биты 7 и 6), причем их нулевое значение (по умолчанию) соответствует внешнему источнику. Напряжение этого внешнего источника может лежать в пределах от 2 В до напряжения питания аналоговой части AVcc (а оно, в свою очередь, не должно отличаться от питания цифровой части более чем на 0,3 В в большую или меньшую сторону). Можно выбрать в качестве опорного и питание самой аналоговой части, причем двояким способом: либо просто соединить выводы AREF и AVcc микросхемы, либо установить биты REFS1..0 в состояние 01 (тогда соединение осуществляется внутренними схемами, но заметим, что внешний опорный источник при этом должен быть отключен). Предусмотрен и встроенный источник (задается REFS1..0 в состоянии 11, при этом к выводу AREF рекомендуется подключать фильтрующий конденсатор), имеющий номинальное напряжение 2,56В с большим разбросом от 2,4 до 2,7 В.

REFS1 REFS0 Источник опорного напряжения
0 0 Внешний ИОН, подключенный к выводу AREF, внутренний ИОН отключен
0 1 Напряжение питания AVcc*
1 0 Зарезервировано
1 1 Внутренний ИОН напряжением 2,56V, подключенный к ввыводу AREF*
*Если к выводу AREF подключен источник напряжения, данные варианты использоваться не могут

Результат преобразования АЦП оказывается в регистрах ADCH:ADCL . Поскольку результат 10-разрядный, то по умолчанию старшие 6 битов в регистре ADCH оказываются равными нулю. Чтение этих регистров производится, начиная с младшего ADCL , после чего регистр ADCH блокируется, пока не будет прочитан. Следовательно, даже если момент между чтением регистров попал на фронт 14 (15) такта АЦП, когда данные в них должны меняться, значения прочитанной пары будут соответствовать друг другу, пусть и результат этого преобразования пропадет. В противоположном порядке читать эти регистры не рекомендуется. Но бит ADLAR (бит 5 регистра ADMUX ) предоставляет интересную возможность: если его установить в 1, то результат преобразования в регистрах ADCH:ADCL выравнивается влево: бит 9 результата окажется в старшем бите ADCH , а незначащими будут младшие 6 битов регистра ADCL . В этом случае, если хватает 8-разрядного разрешения результата, можно прочесть только значение ADCH .

class="eliadunit">

Выбор каналов и режимов их взаимодействия в АЦП производится битами MUX0..3 в регистре ADMUX . Их значения выбирают нужный канал в обычном (недифференциальном) режиме, когда измеряемое напряжение отсчитывается от "земли". Последние два значения этих битов для семейства Mega (11110 и 11111 в большинстве моделей или 1110 и 1111 для ATmega8) выбирают режимы, когда вход АЦП подсоединяется к опорному источнику компаратора (1,22 В) или к "земле" соответственно, что может использоваться для автокалибровки устройства.

Управление входным мультиплексором в моделях Atmega8x

MUX3-MUX0 Несимметричный вход
0000 ADC0
0001 ADC1
0010 ADC2
0011 ADC3
0100 ADC4*
0101 ADC5*
0110 ADC6**
0111 ADC7**
1000-1101 Зарезервировано
1110 1,22V
1111 0V(GND)

*8-ми разрядное преобразование

**Имеются только в корпусах TQFP-32 и MLF-32.

Остальные комбинации разрядов MUX предназначены для установки различных дифференциальных режимов - в тех моделях, где они присутствуют, в других случаях эти биты зарезервированы (как в моделях Atmega8, ATmega163 и др.). В дифференциальном режиме АЦП измеряет напряжение между двумя выбранными выводами (например, между ADC0 и ADC1 ), причем не все выводы могут быть в таком режиме задействованы. В том числе дифференциальные входы АЦП можно подключать к одному и тому же входу для коррекции нуля. Дело в том, что в ряде моделей на входе АЦП имеется встроенный усилитель, с коэффициентом 1х, 10х и 200х (коэффициент выбирается теми же битами MUX0..4 ), и такой режим используется для его калибровки - в дальнейшем значение выхода при соединенных входах можно просто вычесть.

После завершения преобразования (при установке в «1» флага ADIF регистра ADCSR ) его результат сохраняется в регистре данных АЦП . Поскольку АЦП имеет 10 разрядов, этот регистр физически размещен в двух регистрах ввода/вывода ADCH:ADCL , доступных только для чтения. По умолчанию результат преобразования выравнивается вправо (старшие 6 разрядов регистра ADCH - незначащие). Однако он может выравниваться и влево (младшие 6 разрядов регистра ADCL - незначащие). Для управления выравниванием результата преобразования служит разряд ADLAR регистра ADMUX . Если этот разряд установлен в «1», результат преобразования выравнивается по левой границе 16-разрядного слова, если сброшен в «0» - по правой границе.

Обращение к регистрам ADCH и ADCL для получения результата преобразования должно выполняться в определенной последовательности: сначала необходимо прочитать регистр ADCL , а затем ADCH . Это требование связано с тем, что после обращения к регистру ADCL процессор блокирует доступ к регистрам данных со стороны АЦП до тех пор, пока не будет прочитан регистр ADCH. Благодаря этому можно быть уверенным, что при чтении регистров в них будут находиться составляющие одного и того же результата. Соответственно, если очередное преобразование завершится до обращения к регистру ADCH , результат преобразования будет потерян. С другой стороны, если результат преобразования выравнивается влево и достаточно точности 8-разрядного значения, для получения результата можно прочитать только содержимое регистра ADCH .

Для недифференциального режима АЦП, когда напряжение отсчитывается от "земли", результат преобразования определяется формулой:

Ка = 1024Uвх/Uref

Где Ка - значение выходного кода АЦП, Uвх и Uref - входное и опорное напряжения.

Дифференциальному измерению соответствует такая формула:

Ка = 512(Upos - Uneg)/Uref

Где Upos и Uneg - напряжения на положительном и отрицательном входах соответственно. Если напряжение на отрицательном входе больше, чем на положительном, то результат в дифференциальном режиме становится отрицательным и выражается в дополнительном коде от $200 (-512) до $3FF (-1). Реальная точность преобразования в дифференциальном режиме равна 8 разрядам.

Делаем светодиодный индикатор напряжения

Для практического изучения АЦП напишем программу светодиодного индикатора напряжения. Как и в прошлых примерах будем использовать микроконтроллер Atmega8. Восемь индикаторов подключаем к порту D контроллера, это будет линейная шкала уровня сигнала от 0 до 5V. Входом АЦП у нас будет вывод PC0(ADC0), к которому через переменный резистор сопротивлением 10кОм подается напряжение. Схема устройства представлена ниже:

К точности АЦП в этом устройстве предъявляются наименьшие требования. Источником опорного напряжения служит напряжение питания микроконтроллера - 5 Вольт, для этого вывод AREF соединяем с выводом Vcc микроконтроллера, также поступаем с выводами питания аналоговой части AVcc и AGND , подключаем их к плюсу и минусу соответственно, в программе битами REFS1 и REFS0 задаем источник ИОН .

Режим индикации работает следующим образом: после окончания преобразования, которое работает в непрерывном режиме, считываем биты ADCH и ADCL . Это значение потом сравниваем с предварительно расчитанными константами. Если значение ADC больше константы загорается один светодиод, если значение ADC больше второй константы загораются уже два светодиода и т.д.

Константы высчитываются так: так как АЦП 10-ти битный, число 1024 раскладываем на 8 равных частей, а по формуле уже вычисляем эти значения в Вольтах.

1020...5V(приблизительно)

Полный код программы показан ниже. Частота тактового генератора контроллера 8MHz.

/*** Использование АЦП. Светодиодная шкала ***/ #include #include int main (void) { DDRD = 0xFF; PORTD = 0x00; /*** Настройка АЦП ***/ ADCSRA |= (1 << ADEN) // Включение АЦП |(1 << ADPS1)|(1 << ADPS0); // предделитель преобразователя на 8 ADMUX |= (0 << REFS1)|(0 << REFS0) // внешний ИОН |(0 << MUX0)|(0 << MUX1)|(0 << MUX2)|(0 << MUX3); // вход PC0 while(1) { unsigned int u; ADCSRA |= (1 << ADSC); // Начинаем преобразование while ((ADCSRA&(1 << ADIF))== 0); // Ждем флага окончания преобразования u = (ADCL|ADCH << 8); // Считываем ADC if (u > 128) // 0.625V PORTD = 0b00000001; else PORTD = 0b00000000; if (u > 256) // 1.25V PORTD = 0b00000011; if (u > 384) // 1.875V PORTD = 0b00000111; if (u > 512) // 2.5V PORTD = 0b00001111; if (u > 640) // 3.125V PORTD = 0b00011111; if (u > 768) // 3.75V PORTD = 0b00111111; if (u > 896) // 4.375V PORTD = 0b01111111; if (u > 1020) // 5V PORTD = 0b11111111; _delay_ms(30); } }

В следующем примере мы разберем принципы создания вольтметра 0-30V на микроконтроллере Atmega8.

Аналого-цифровые преобразователи (АЦП) являются устройствами, которые принимают входные аналоговые сигналы и генерируют соответствующие им цифровые сигналы, пригодные для обработки микропроцессорами и другими цифровыми устройствами.

АЦП входит во многие современные модели МК AVR, он многоканальный. Обычно число каналов равно 8, но в разных моделях оно может варьировать от 4 каналов в младших моделях семейства Tiny, 6 в ATmega8, до 16 каналов в ATmega2560. Многоканальность означает, что на входе единственного модуля АЦП установлен аналоговый мультиплексор, который может подключать этот вход к различным выводам МК для осуществления измерений нескольких независимых аналоговых величин с разнесением по времени. Входы мультиплексора могут работать по отдельности (в несимметричном режиме для измерения напряжения относительно "земли") или (в некоторых моделях) объединяться в пары для измерения дифференциальных сигналов. Иногда АЦП дополнительно снабжается усилителем напряжения с фиксированными значениями коэффициента усиления 10 и 200.

Сам АЦП представляет собой преобразователь последовательного приближения с устройством выборки-хранения и фиксированным числом тактов преобразования, равным 13 (или 14 для дифференциального входа; первое преобразование после включения потребует 25 тактов для инициализации АЦП). Тактовая частота формируется аналогично тому, как это делается для таймеров- с помощью специального предделителя тактовой частоты МК, который может иметь коэффициенты деления от 1 до 128. Но в отличие от таймеров, выбор тактовой частоты АЦП не совсем произволен, т. к. быстродействие аналоговых компонентов ограничено. Поэтому коэффициент деления следует выбирать таким, чтобы при заданном "кварце" тактовая частота АЦП укладывалась в рекомендованный диапазон 50-200 кГц (т. е. максимум около 15 тыс. измерений в секунду). Увеличение частоты выборки допустимо, если не требуется достижение наивысшей точности преобразования.

Разрешающая способность АЦП в МК AVR - 10 двоичных разрядов, чего для большинства типовых применений достаточно. Абсолютная погрешность преобразования зависит от ряда факторов и в идеальном случае не превышает ±2 младших разрядов, что соответствует общей точности измерения примерно 8 двоичных разрядов. Для достижения этого результата необходимо принимать специальные меры: не только "вгонять" тактовую частоту в рекомендованный диапазон, но и снижать по максимуму интенсивность цифровых шумов. Для этого рекомендуется, как минимум, не использовать оставшиеся выводы того же порта, к которому подключен АЦП, для обработки цифровых сигналов, правильно разводить платы, а как максимум - дополнительно к тому еще и включать специальный режим ADC Noise Reduction.

Отметим также, что АЦП может работать в двух режимах: одиночного и непрерывного преобразования. Второй режим целесообразен лишь при максимальной частоте выборок. В остальных случаях его следует избегать, т. к. обойти в этом случае необходимость параллельной обработки цифровых сигналов, как правило, невозможно, а это означает снижение точности преобразования.

Регистры управления АЦП

Для разрешения работы АЦП необходимо записать лог. 1 в разряд ADEN регистра ADCSR, а для выключения - лог. 0. Если АЦП будет выключено во время цикла преобразования, то преобразование завершено не будет (в регистре данных АЦП останется результат предыдущего преобразования).

Режим непрерывных измерений активизируется установкой бита ADFR (бит 5) этого же регистра. В ряде моделей Mega этот бит носит наименование ADATE, и управление режимом работы производится сложнее: там добавляются несколько режимов запуска через различные прерывания (в т. ч. прерывание от компаратора, при наступлении различных событий от таймера и т. п.), и выбирать их следует, задавая биты ADTS регистра SFIOR, а установка бита ADATE разрешает запуск АЦП по этим событиям. Так как нулевые значения всех битов ADTS (по умолчанию) означают режим непрерывного преобразования, то в случае, когда вы их значения не трогали, функции битов ADATE и ADFR в других моделях будут совпадать.

Если выбран режим запуска не от внешнего источника, то преобразование запускается установкой бита ADTS (бит 6 того же регистра ADCSR/ADCSRA). При непрерывном режиме установка этого бита запустит первое преобразование, затем они будут автоматически повторяться. В режиме однократного преобразования, а также независимо от установленного режима при запуске через прерывания (в тех моделях, где это возможно) установка бита ADCS просто запускает одно преобразование. При наступлении прерывания, запускающего преобразование, бит ADCS устанавливается аппаратно. Отметим, что преобразование начинается по-фронту первого тактового импульса (тактового сигнала АЦП, а не самого контроллера!) после установки ADCS. По окончании любого преобразования (и в одиночном, и в непрерывном режиме) устанавливается бит ADIF (бит 4. флаг прерывания). Разрешение прерывания АЦП осуществляется установкой бита ADIE (бит 3) все того же регистра ADCSR/ADCSRA.

Для работы с АЦП необходимо еще установить его тактовую частоту. Это делается тремя младшими битами регистра ADCSR/ADCSRA под названием ADPS0..2. Коэффициент деления частоты тактового генератора МК устанавливается по степеням двойки, все нули в этих трех битах соответствуют коэффициенту 2, все единицы - 128. Оптимальная частота преобразования лежит в диапазоне 50-200 кГц, так что, например, для тактовой частоты МК, равной 4 МГц, коэффициент может иметь значение только 32 (состояние битов ADPS0..2 = 101, частота 125 кГц) или 64 (состояние битов ADPS0..2 = 110, частота 62,5 кГц). При тактовой частоте 16 МГц в допустимый диапазон укладывается только коэффициент 128.

Выборка источника опорного напряжения производится битами REFS1..0 регистра ADMUX (старшие биты 7 и 6), причем их нулевое значение (по умолчанию) соответствует внешнему источнику. Напряжение этого внешнего источника может лежать в пределах от 2 В до напряжения питания аналоговой части AVcc (а оно, в свою очередь, не должно отличаться от питания цифровой части более чем на 0,3 В в большую или меньшую сторону). Можно выбрать в качестве опорного и питание самой аналоговой части, причем двояким способом: либо просто соединить выводы AREF и AVcc микросхемы, либо установить биты REFS1..0 в состояние 01 (тогда соединение осуществляется внутренними схемами, но заметим, что внешний опорный источник при этом должен быть отключен). Предусмотрен и встроенный источник (задается REFS1..0 в состоянии 11, при этом к выводу AREF рекомендуется подключать фильтрующий конденсатор), имеющий номинальное напряжение 2,56В с большим разбросом от 2,4 до 2,7 В.

*****REFS*******

Результат преобразования АЦП оказывается в регистрах ADCH:ADCL. Поскольку результат 10-разрядный, то по умолчанию старшие 6 битов в регистре ADCH оказываются равными нулю. Чтение этих регистров производится, начиная с младшего ADCL, после чего регистр ADCH блокируется, пока не будет прочитан. Следовательно, даже если момент между чтением регистров попал на фронт 14 (15) такта АЦП, когда данные в них должны меняться, значения прочитанной пары будут соответствовать друг другу, пусть и результат этого преобразования пропадет. В противоположном порядке читать эти регистры не рекомендуется. Но бит ADLAR (бит 5 регистра ADMUX) предоставляет интересную возможность: если его установить в 1, то результат преобразования в регистрах ADCH:ADCL выравнивается влево: бит 9 результата окажется в старшем бите ADCH, а незначащими будут младшие 6 битов регистра ADCL. В этом случае, если хватает 8-разрядного разрешения результата, можно прочесть только значение ADCH.

Выбор каналов и режимов их взаимодействия в АЦП производится битами MUX0..3 в регистре ADMUX. Их значения выбирают нужный канал в обычном (недифференциальном) режиме, когда измеряемое напряжение отсчитывается от "земли". Последние два значения этих битов для семейства Mega (11110 и 11111 в большинстве моделей или 1110 и 1111 для ATmega8) выбирают режимы, когда вход АЦП подсоединяется к опорному источнику компаратора (1,22 В) или к "земле" соответственно, что может использоваться для автокалибровки устройства.

Остальные комбинации разрядов MUX предназначены для установки различных дифференциальных режимов - в тех моделях, где они присутствуют, в других случаях эти биты зарезервированы (как в моделях Atmega8, ATmegal63 и др.). В дифференциальном режиме АЦП измеряет напряжение между двумя выбранными выводами (например, между ADC0 и ADC1), причем не все выводы могут быть в таком режиме задействованы. В том числе дифференциальные входы АЦП можно подключать к одному и тому же входу для коррекции нуля. Дело в том, что в ряде моделей на входе АЦП имеется встроенный усилитель, с коэффициентом 1х, 10х и 200х (коэффициент выбирается теми же битами MUX0..4), и такой режим используется для его калибровки - в дальнейшем значение выхода при соединенных входах можно просто вычесть.

Для недифференциального режима АЦП, когда напряжение отсчитывается от "земли", результат преобразования определяется формулой: Ка = 1024Uвх/Uref, где Ка - значение выходного кода АЦП, Uвх и Uref - входное и опорное напряжения. Дифференциальному измерению соответствует такая формула: Ка = 512(Upos - Uneg)/Uref, где Upos и Uneg - напряжения на положительном и отрицательном входах соответственно. Если напряжение на отрицательном входе больше, чем на положительном, то результат в дифференциальном режиме становится отрицательным и выражается в дополнительном коде от $200 (-512) до $3FF (-1). Реальная точность преобразования в дифференциальном режиме равна 8 разрядам.


Описание работы Аналого-цифрового преобразователя.
Прерывания от АЦП

ATMega16 содержит в себе 10-битовый АЦП, вход которого может быть соединён с одним из восьми выводов Port A. АЦП Mega16, как и любому другому АЦП, нужно опорное напряжение для целей сравнения со входным (если измеряемое равно опорному, то получаем максимальный код в двоичном виде). Опорное напряжение подаётся на вывод ADRef или может использоваться внутренний генератор с фиксированным напряжением 2,65 В. Полученный результат можно представить в таком виде:

АЦП включается установкой бита ADEN в регистре ADCSRA. После преобразования, 10-битный результат оказывается в 8-битных регистрах ADCL и ADCH. По умолчанию, младший бит результата находится справа (то есть в bit 0 регистра ADCL, так называемое правое ориентирование). Но порядок следования битов на левое ориентирование можно сменить установив бит ADLAR в регистре ADMUX. Это удобно, если требуется получить 8-битовый результат. В таком случае требуется прочитать только регистр ADCH. В противном случае, Вы должны сначала прочитать регистр ADCL первым, а ADCH вторым, чтобы быть уверенным в том, что чтение этих двух регистров относится к результату одного преобразования.

Одиночное преобразование может быть вызвано записью бита ADSC в регистр ADCSRA. Этот бит остаётся установленным всё время, занимаемое преобразованием. Когда преобразование закончено, бит автоматически устанавливается в 0. Можно также начинать преобразования по событиям из разных источников. Модуль АЦП также может работать в режиме "свободного полёта". В таком случае АЦП постоянно производит преобразование и обновляет регистры ADCH и ADCL новыми значениями.

Для выполнения преобразования модулю АЦП необходима тактовая частота. Чем выше эта частота, тем быстрее будет происходить преобразование (оно, обычно, занимает 13 тактов, первое преобразование занимает 25 тактов). Но чем выше частота (и выше скорость преобразования), тем менее точным получается результат. Для получения максимально точного результата, модуль АЦП должен тактироваться частотой в пределах от 50 до 200 КГц. Если необходим результат с точностью менее 10 бит, то можно использовать частоту больше 200 КГц. Модуль АЦП содержит делитель частоты, чтобы получать нужную тактовую частоту для преобразования из частоты процессора.

Регистр ADMUX задаёт входной контакт порта A для подключения АЦП, ориентирование результата и выбор опорной частоты. Если установлен бит ADLAR, то результат лево-ориентирован. Опорная частота от внутреннего генератора задаётся выставленными в 1 битами REFS1 и REFS0. Если оба бита сброшены, то опорная частота берётся от контакта AREF. В случае, если REFS1=0 а REFS0=1, опорная частота берётся от AVCC с внешним конденсатором, подключенным к AREF. Выбор контакта ввода выполняется следующим образом:

Регистр контроля и статуса АЦП ADCSRA :

Бит ADEN=1 включает модуль АЦП.
Запись единицы в ADSC запускает цикл преобразования. В режиме "свободного полёта" запись единицы запускает первое преобразование, последующие запускаются автоматически.
ADIF - флаг прерывания АЦП. Этот бит устанавливается в 1 когда АЦП завершено преобразование и в регистрах ADCL и ADCH находятся актуальные данные. Этот флаг устанавливается даже в том случае, если прерывания запрещены. Это необходимо для случая программного опроса АЦП. Если используются прерывания, то флаг сбрасывается автоматически. Если используется программный опрос, то флаг может быть сброшен записью лог.1 в этот бит.
ADIE - Если в этом бите установлена единица, и прерывания разрешены глобально, то при окончании преобразования будет выполнен переход по вектору прерывания от АЦП.
Биты ADPS2..0 задают коэффициенты предделителя частоты:


Любой микроконтроллер общается с периферийными устройствами при помощи портов ввода/вывода. При этом он способен “воспринимать” только цифровые сигналы – логический ноль или единицу. Например, у МК ATmega8 при напряжении питания 5 В логический ноль – это напряжение лежащие в интервале от 0 до 1,3 В, а единица – от 1,8 до 5 В. Довольно часто в радиолюбительской практике возникает необходимость измерять напряжения, которое может принимать любое значение в диапазоне от нуля до уровня напряжения питания. Для этих задач в составе всех микроконтроллеров AVR имеется аналого-цифровой преобразователь.


Не вникая в подробности устройства АЦП, представим его типовым черного ящика. На вход АЦП идет аналоговый сигнал, а на выходе его имеем последовательность цифровых значений. АЦП имеет огромное число различных характеристик, из них можно выделить такие как: разрешающая способность, абсолютную точность, предельная частота дискретизации и диапазон входных напряжений.

Разрешающая способность или разрешение – эта характеристика АЦП помогает различать два значения входного сигнала. Определяется как величина обратная наибольшему числу кодовых комбинаций АЦП на выходе. У нашего МК АЦП десяти разрядный, поэтому максимальное число возможных кодовых комбинаций будет равно 2 10 = 1024 , а его разрешающая способность равна 1/1024 от полной шкалы допустимых входных напряжений.

Для правильной работы АЦП требуется источник опорного напряжения (ИОН). По отношению к которому, АЦП измеряет сигналы поступающие на его вход. МК AVR позволяют в роли ИОН применять напряжение питания, их внутренний опорный источник на 2,56 В, а напряжение на выходе AREF (внешний ИОН).

Так как наша схема запитана от 5 В, тогда 1/1024 от всей шкалы получится 0,0048 В или около 5 мВ. С таким шагом АЦП будет определять уровень входного напряжения. Если два ближайших значения на входе преобразователя будут отличаться друг от друга на величину менее 5 мВ, АЦП будет считать равными. На практике разрешающая способность любого АЦП ограничена шумами.

Абсолютная точность АЦП это отклонение реального преобразования от идеального. Это составной результат нескольких погрешностей преобразователя. Математически описывается в количестве младших значащих разрядов (LSB). Максимальная абсолютная погрешность АЦП «Atmega8» равна 1.5 LSB. Для нашего случая абсолютная точность равна 2 × 5 мВ = ±10 мВ

Предельная частота дискретизации это есть быстродействие АЦП, которое измеряется в Гц или количестве выборок за секунду (SPS – samples per second). Для МК AVR она равна15 kSPS (килло семплов за секунду).

На порт В - МК AVR подключен типовой ЖК дисплей 16х2. Выводы AREF и AVCC подключены к питающему напряжению 5В. Это и есть ИОН. На порт С Atmega к нулевому разряду подключен контакт с вольтметром и переменным сопротивлением для изменения уровня входного напряжения. Наша задача в этом учебном примере следующая: Мы хотим вывести на ЖК экран величину напряжения, аналогичную измерению вольтметра.

Переходим к программированию запускаем новый проект в программе . В настройках Chip выбираем МК Atmega8, частоту выставляем 4,00000000 MHz. (см. пример с мигающим светодиодом). Переходим во вкладку LCD выбираем PORTB. И сохраняем проект под названием ADC (аббревиатура АЦП на забугорном языке). Вначале необходимо добавить две директивы препроцессора для работы с текстом и задержкой. Для этого после директивы LCD вставим две строки.

#include
#include

Первая строка необходима для задержек, а вторая для работы дисплея с текстом. Далее создаем массив для промежуточного хранения форматированного текста. После текста в коде, пишем.

Затем после открытия главной функции main, мы должны добавить еще две переменных. Одна из них используется для хранения значения после выборки, а другая для хранения выводимого на экран значения.

Теперь настроим сам АЦП. Для этого после настройка компаратора запишем следующее.

// Analog Comparator initialization
// Analog Comparator: Off
// Analog Comparator Input Capture by Timer/Counter 1: Off

ACSR=0x80;
SFIOR=0x00;

ADMUX=0; // Первая строка, № порта.
ADCSR=0x85; // Вторая строка настройка АЦП. (в двоичной системе x85=10000101)

Для того чтоб начать работу с АЦП у МК имеется регистр ADCSR. Вот, что в нем находится.

0-й бит ADPS0 Настройка частоты преобразования
1-й бит ADPS1 -/-/-
2-й бит ADPS2 -/-/-
3-й бит ADIE Разрешение прерывания
4-й бит ADIF Флаг прерывания
5-й бит ADFR Выбор работы АЦП. 1-непрерывный либо 0-по запуску ADSC
6-й бит ADSC Запуск преобразование 1-старт. После преобразования сбрасывается в ноль аппаратно.
7-й бит ADEN Разрешение работы АЦП 1-да 0-нет

Для включения в АЦП записываем 1 в 7-й разряд, 0 в 6-й, 5-й, 3-й и 4-й разряды. Теперь подбираем частоту, т.к у нас кварц на 4000 кГц, то нам его надо поделить (для стабильной работы АЦП его требуется тактировать частотой в диапазоне 50 кГц - 200 кГц), чуть ниже представлена таблица коэффициентов деления.

Возьмем коэффициент делителя на 32, получим частоту 125 кГц, что вполне достаточно для стабильной работы АЦП. Итак, в регистр ADCSR нам надо записать значение 10000101.

С настройками АЦП надеюсь понятно. Теперь давайте выведем в первой строке на экране наши намерения. Для этого после инициализации LCD дисплея запишем строчку. lcd_putsf("Work with ADC");

// LCD module initialization
lcd_init(16);
lcd_putsf("Work with ADC"); // Выводим запись

Теперь при старте программы В МК увидим эту надпись. Далее в бесконечном цикле пишем тело основной программы.

while (1)
{
delay_ms(20); // Задаем задержку в 20 миллисекунд
ADCSR |= 0x40; // Записываем 1 в ADSC
data = ADCW; // Вычитываем значение
V = (float) data*0.0048828; // Переводим в вольты
sprintf(string, "Data: %1.2f", V); // форматируем
lcd_gotoxy(0,1); // Выставляем курсор
lcd_puts(string); // Выводим значение

delay_ms(20); задержку на 20 миллисекунд.
ADCSR |= 0x40; битное ИЛИ. Число 0х40 в бинаре выглядит так 0b01000000. Если мы проведем по битное ИЛИ с 0х85 (0b10000101), то у нас в 6-й разряд запишется 1. Для того, чтобы началось преобразование в 6-й разряд нужно записать 1. А после преобразование он сбросится в 0 аппаратно.
data = ADCW; После преобразования микроконтроллер записывает полученное значение в ADCW. Вот оттуда мы его и возьмем
V = (float) data*0.0048828; Преобразуем полученное значение в вольты, т.к ИОН=5В, а значение регистра 1024, то мы 5/1024=0.0048828 получим коэффициент напряжения. Минимальная величина напряжения будет при минимальном значении регистра ADCW. То есть если в нем будет значение 1, то напряжение будет 0.0048828 В. Поэтому в строке, данные ADCW перемножаем на это значение - 0.0048828. Слово float в скобке используется для того чтобы преобразовать переменную data из целочисленной в вещественную с плавающей точкой.
sprintf(string, "Data: %1.2f", V); Заносим значение напряжения в массив string с последующим форматированием. Сначала впишем Data: . После ставим знак процента. 1.2f - говорит о том что мы хотим вывести на экран один знак до запятой и два знака после, а буква f означает, что это значение вещественным с плавающей точкой.
lcd_gotoxy(0,1); Курсор в нулевую позицию во второй строке.
lcd_puts(string); Выводим значение на дисплей.

Перед тем как собрать проект нужно сделать небольшие настройки в CodeVisionAVR. В меню нажимаем "Project->Configure" и в открывшемся окне переходим во вкладку "C Compiler", затем в левом нижнем углу меняем значение (s)printf Features: с int, width на float, width, precision.

Результат работы программы на рисунке ниже:


Архив с проектом для CodeVisionAVR и Proteus вы можете скачать по зеленой ссылке выше. Затем распакуйте архив в корень диска С и проект можно запускать.

Урок 22

Часть 2

Изучаем АЦП

Сегодня мы продолжаем изучать очень интересную технологию, а для микроконтроллера — периферию — аналго-цифровой преобразователь или как его называют АЦП . В нашего занятия мы познакомились, что такое вообще АЦП, также познакомились, как он организован в контроллере AVR, а также создали новый проект и настроили его.

Дальнейшая задача — реализация АЦП в нашем проекта.

Ну и чтобы нам данную задачу выполнить, нам нужны будут определённые функции для обращения к АЦП контроллера.

Для этого зайдём в файл adc.c и создадим функцию инициализацию нашего АЦП

#include "adc.h"

//—————————————-

void ADC_Init ( void )

{

}

Также создадим на данную функцию прототип в хедер-файле adc.h для видимости её из внешних модулей, а также заодно и посмотрим всё содержимое данного файла

#ifndef ADC_H_

#define ADC_H_

#include "main.h"

void ADC_Init ( void );

#endif /* ADC_H_ */

Продолжим теперь заполнять кодом тело данной функции. Так как в мы хорошенечко ознакомились с регистрами, нам это особого труда не составит.

Начнем с управляющего регистра

void ADC_Init ( void )

ADCSRA |= (1<< ADEN )

|(1<< ADPS2 )|(1<< ADPS1 )|(1<< ADPS0 ); //Делитель 128 = 64 кГц

Это не две строки, а одна, так писать в студии можно и даже нужно, так как код становится понятнее. А одна, потому что нет символа конца строки — точки с запятой.

Здесь мы включили бит ADEN , тем самым включили вообще модуль АЦП, а также установили делитель на 128, тем самым, помня то, что частота тактирования у нас 8 МГц и разделив её значение на 128, мы получили работу АЦП на частоте 64 кГц, что вполне нормально и надёжно, до 200 граничных далеко. Как видим, ничего сложного в инициализации регистра нет.

Также ещё в данной функции нам необходимо выбрать канал, к которому мы будем подключать измеряемое напряжение. У нас судя по схеме канал 0, поэтому соответствующий MUX мы и включим. А соответствующий MUX — это все нули в данных битах, поэтому ничего-то и включать не надо. Но мы ещё помним, что в регистре ADMUX у нас помимо всего прочего есть и управляющие биты, а именно биты REFS1 и REFS0, с помощью которых мы установим в качестве источника опорного напряжения внутренний источник на 2,56 вольта, а ADLAR мы не используем

ADCSRA |= (1<< ADEN ) // Разрешение использования АЦП

|(1<< ADPS2 )|(1<< ADPS1 )|(1<< ADPS0 ); //Делитель 128 = 64 кГц

ADMUX |= (1<< REFS1 )|(1<< REFS0 ); //Внутренний Источник ОН 2,56в, вход ADC0

Ну вот, в принципе, и вся инициализация.

Вызовем эту функцию в главном модуле программы в функции main() где-нибудь вот тут

LCD_ini (); //Инициализируем дисплей

ADC_Init (); //Инициализируем АЦП

clearlcd (); //Очистим дисплей

Ну и также нам нужна будет в модуле adc.c ещё одна функция, которая будет инициализировать непосредственно начало процесса аналого-цифрового преобразования в нашем ADC

unsigned int ADC_convert ( void )

{

}

Само собой нужен будет в хедер-файле прототип на неё

void ADC_Init ( void );

unsigned int ADC_convert ( void );

Данная функция нам вернёт значение из регистровой пары ADC , которая и будет содержать величину нашего электрического сигнала в единицах, выражающих отношение измеряемого сигнала к опорному и умноженных на количество возможных отрезков, которых у нас 1023, ну или 1024. Насчёт этого ходят много слухов, но в технической документации на контроллер в расчетной формуле содержится именно 1024. Но это нам не так важно.

Включим преобразование с помощью бита ADSC

unsigned int ADC_convert ( void )

ADCSRA |= (1<< ADSC ); //Начинаем преобразование

Теперь нам надо как-то отследить тот момент, когда данное преобразование закончится. А делается это достаточно легко с помощью мониторинга того же бита ADSC, который по окончании процесса преобразования сам сбрасывается в 0 (When the conversion is complete, it returns to zero). Отслеживается данный бит с помощью условного цикла

ADCSRA |= (1<< ADSC ); //Начинаем преобразование

while (( ADCSRA & (1<< ADSC )));

Ну и по окончании вернём результат в виде беззнаковой величины

while (( ADCSRA & (1<< ADSC ))); //проверим закончилось ли аналого-цифровое преобразование

return ( unsigned int ) ADC ;

Вернёмся теперь в нашу главную функцию main() и создадим там локальную переменную для хранения результата преобразования для дальнейшей с ним работы

int main ( void )

unsigned int adc_value ;

Вызовем функцию преобразования, которая нам положит в нашу переменную результат преобразования

while (1)

adc_value = ADC_convert (); //Вызовем преобразование

Setpos (0,0);

Давайте сначала отобразим данную сырую величину, хотя бы посмотрим, что в ней есть. За основу мы пока возьмём код из наших часов, функция sprintf на помощь придёт в более поздних занятиях, время её пока не пришло и нам надо вообще понять, как преобразовываются символы. Это нам ой как пригодится в программировании светодиодных индикаторов

Setpos (0,0);

sendcharlcd ( adc_value /1000+0x30);

sendcharlcd (( adc_value %1000)/100+0x30); //Преобразуем число в код числа

sendcharlcd (( adc_value %100)/10+0x30); //Преобразуем число в код числа

sendcharlcd ( adc_value %10+0x30); //Преобразуем число в код числа

Delay_ms (500);

Здесь мы разбиваем по цифрам четырёхзначную величину.

Теперь мы соберём код, прошьём контроллер и посмотрим наши результаты, покрутив резистор на 10 килоом

Вот так вот оно всё и работает.

Теперь давайте ещё на дисплее попробуем отобразить всё в вольтах, чтобы определить, какое у нас всё-таки напряжение на центральном контакте нашего переменного резистора. Для этого создадим переменную плавающего типа

unsigned int adc_value ;

float n ;

Также забудем про существование функции sprintf и попробуем получить плавающий тип на дисплее программным путём. Для этого сначала преобразуем наш сырой результат в плавающий тип явным образом, то есть та же цифра будет, но только тип другой, не забыв, конечно, перед этим поставить курсор в нужное место на дисплее. Для этого существует понятие в языке СИ явного преобразования типов и разделим преобразованный результат на 400

sendcharlcd ( adc_value %10+0x30); //Преобразуем число в код числа

setpos (8,0);

n = ( float ) adc_value / 400;

Тут, конечно, возникает вопрос, а почему мы делим именно на 400. А вот почему.

Это ничто иное как 1024, разделённое на 2,56, то есть на наше опорное напряжение. Видимо, не зря разработчики контроллера выбрали именно такую величину опроного напряжения, чтобы всё делилось без остатка. Почему мы именно такое деление применяем. А потому что у нас есть формула в технической документации

Вот поэтому и мы и вычислили её самую последнюю часть. Осталось теперь лишь только перевернуть ещё наоборот, выразив отсюда входное напряжение, так как неизвестное у нас именно оно. И мы получим, что оно будет у нас равно ADC, делённому на 400, что мы, собственно и сделали выше в коде. Я думаю, всё предельно стало теперь всем понятно.

Осталось самое интересное — отобразить всё это на экран, зная, то.что мы не можем работать с дисплеем с плавающим типом. А оказывается всё просто. Всё решается вот таким кусочком кода

N = ( float ) adc_value / 400;

sendcharlcd (( unsigned char ) n +0x30); //Преобразуем число в код числа

sendcharlcd ("."); //Преобразуем число в код числа

sendcharlcd ((( unsigned char ) ( n *10))%10 +0x30); //Преобразуем число в код числа

sendcharlcd ((( unsigned char ) ( n *100))%10 +0x30); //Преобразуем число в код числа

Delay_ms (500);

Не пугайтесь, сейчас мы всё тут разрулим.

Сначала мы обратным преобразованием типов отсекаем вооще всю дробь и, зная, что дальше 9 мы не уйдём и у нас будет только одна цифра, да мы даже и дальше 2 тут не уйдём, у нас максимум 2,56, мы просто отображаем данную цифру.

Потом мы умножаем наш результат, преобразованный к плавающему типу на 10, тем самым, передвигаем запятую на один разряд в нём вправо и, преобразовав результат вычисления обратно в целочисленный тип, берём из него известным образом младшую цифру и отображаем её на дисплее после запятой.

Подобным образом поступим с цифрой следующей, только здесь мы умножаем результат на 100, что переносит в единицы уже вторую цифру после запятой. Можно продолжить дальше, но нам и двух цифр хватит.

Вот и всё!

Собираем код, прошиваем контроллер и смотрим наши интересные результаты, крутя наш резистор

Post Views: 6 917

АЦП — Аналого-цифровой преобразователь. Из названия можно догадаться, что на вход подается аналоговый сигнал, который преобразуется в число.

Первое о чем нужно сказать — АЦП микроконтроллера умеет измерять только напряжение. Чтобы произвести измерение других физических величин, их нужно вначале преобразовать в напряжение. Сигнал всегда измеряется относительно точки называемой опорное напряжение, эта же точка является максимумом который можно измерить. В качестве источника опорного напряжения (ИОН), рекомендуется выбирать высокостабильный источник напряжения, иначе все измерения будут плясать вместе с опорным.

Одной из важнейших характеристик является разрешающая способность, которая влияет на точность измерения. Весь диапазон измерения разбивается на части. Минимум ноль, максимум напряжение ИОН. Для 8 битного АЦП это 2^8=256 значений, для 10 битного 2^10=1024 значения. Таким образом, чем выше разрядность тем точнее можно измерять сигнал.

Допустим вы измеряете сигнал от 0 до 10В. Микроконтроллер используем Atmega8, с 10 битным АЦП. Это значит что диапазон 10В будет разделен на 1024 значений. 10В/1024=0,0097В — с таким шагом мы сможем измерять напряжение. Но учтите, что микроконтроллер будет считать, величину 0.0097, 0.0098, 0.0099… одинаковыми.

Тем не менее шаг в 0,01 это достаточно неплохо. Однако, есть несколько рекомендаций, без которых эта точность не будет соблюдена, например для измерения с точностью 10бит, частота на которой работает АЦП должна быть 50-200 кГц. Первое преобразование занимает 25 циклов и 13 циклов далее. Таким образом, при частоте 200кГц мы сможем максимум выжать
200 000/13 = 15 384 измерений.

В качестве источника опорного напряжения можно использовать внутренний источник и внешний. Напряжение внутреннего источника (2,3-2,7В) не рекомендуется использовать, по причине низкой стабильности. Внешний источник подключается к ножке AVCC или Aref, в зависимости от настроек программы.

При использовании АЦП ножка AVCC должна быть подключена. Напряжение AVCC не должно отличаться от напряжения питания микроконтроллера более чем на 0,3В. Как было сказано, максимальное измеряемое напряжение равно опорному напряжению(Vref), находится оно в диапазоне 2В-AVCC. Таким образом, микроконтроллер не может измерить более 5В.

Чтобы расширить диапазон измерения, нужно измерять сигнал через делитель напряжения. Например, максимальное измеряемое напряжение 10В, опорное напряжение 5В. Чтобы расширить диапазон измерения, нужно уменьшить измеряемый сигнал в 2 раза.

Формула для расчета делителя выглядит так:

U вых = U вх R 2 /(R 1 + R 2)

Подставим наши значения в формулу:

5 = 10*R2/(R1+R2)

т.е. можно взять любые два одинаковых резистора и подключить их по схеме

Следовательно, когда мы измеряем напряжение через делитель, нужно полученное значение АЦП умножить на коэффициент=Uвых/Uвх.

Полная формула вычисления измеряемого напряжения будет выглядеть так:
U=(опорное напряжение*значение АЦП*коэффициент делителя)/число разрядов АЦП

Пример: опорное 5В, измеренное значение АЦП = 512, коэффициент делителя =2, АЦП 10разрядный.

(5*512*2)/1024=5В — реальное измеренное значение напряжения.

Некоторые программисты пишут программу так, чтобы микроконтроллер автоматически вычислял коэффициент делителя, для этого выходной сигнал измеряют образцовым прибором и заносят это значение в программу. Микроконтроллер сам соотносит истинное напряжение каждому значению АЦП, сам процесс однократный и носит название калибровки.

Перейдем к программной реализации. Создаем проект с указанными параметрами. Также подключим дисплей на порт D для отображения информации.

Измерение будет производиться в автоматическом режиме, обработка кода в прерывании, опорное напряжение подключаем к ножке AVCC. По сути нам нужно только обрабатывать получаемые данные. Измеренные данные хранятся в переменной adc_data. Если нужно опрашивать несколько каналов, то выбираем какие каналы сканировать, а данные будут для ножки 0 в adc_data, для ножки 1 в adc_data и т.д.

В основном цикле добавим строки:

result=((5.00*adc_data)/1024.00); //пересчитываем значение АЦП в вольты
sprintf(lcd_buffer,»U=%.2fV»,result); //помещаем во временную переменную результат
lcd_puts(lcd_buffer); //выводим на экран

Небольшое замечание, чтобы использовать числа с плавающей точкой, нужно в настройках проекта изменить (s)printf Features: int, width на float, width, precision. Если этого не сделать десятые и сотые мы не увидим.

Таким образом, мы всего лишь перевели значение АЦП в вольты и вывели на дисплей. Результат в протеусе выглядит так:

Резистором можно менять напряжение, измеряемое напряжение выведено на дисплей. При сборке на реальном железе к ножке Aref нужно подключить конденсатор на 0,1мкФ. Урок получился немного сложным, но думаю он вам понравится.

Файл протеуса и прошивка:

Update:
Измерение тока: