Простое тиристорное зарядное устройство на КУ202. Автомобильное зарядное устройство Управление тиристором в зарядном устройстве

Для того чтобы автомобиль завёлся, ему необходима энергия. Такая энергия берётся из аккумулятора. Как правило, его подзарядка происходит от генератора во время работы двигателя. Когда автомобиль долго не используется или батарея неисправна, она разряжается до такого состояния, что машина уже не может завестись . В этом случае требуется внешняя зарядка. Такое устройство можно купить или собрать самостоятельно, но для этого понадобится схема зарядного устройства.

Принцип работы автомобильного аккумулятора

Автомобильный аккумулятор подаёт питание на различные приборы в автомобиле при выключенном двигателе и предназначен для его запуска. По виду типу исполнения применяется свинцово-кислотная батарея. Конструктивно она собирается из шести элементов питания с номинальным значением напряжения 2,2 вольта, соединённых между собой последовательно. Каждый элемент представляет собой набор решетчатых пластин из свинца. Пластины покрываются активным материалом и погружаются в электролит.

Раствор электролита включает в свой состав дистиллированную воду и серную кислоту . От плотности электролита зависит морозостойкость батареи. В последнее время появились технологии, позволяющие адсорбировать электролит в стеклянном волокне или сгущать его с использованием силикагеля до гелеобразного состояния.

Каждая пластина имеет отрицательный и положительный полюс, а изолируются они между собой использованием пластмассового сепаратора. Корпус изделия выполняется из пропилена, не разрушающегося под действием кислоты и служащий диэлектриком. Положительный полюс электрода покрывается диоксидом свинца, а отрицательный губчатым свинцом. В последнее время стали выпускаться аккумуляторные батареи с электродами из свинцово-кальциевого сплава. Такие аккумуляторы полностью герметичные и не требуют обслуживания.

При подключении к аккумулятору нагрузки активный материал на пластинах вступает в химическую реакцию с раствором электролита, и возникает электрический ток. Электролит со временем истощается из-за осаждения сульфата свинца на пластинках. Аккумуляторная батарея (АКБ) начинает терять заряд. В процессе зарядки химическая реакция происходит в обратном порядке, сульфат свинца и вода преобразуются, повышается плотность электролита и восстанавливается величина заряда.

Аккумуляторы характеризуются значением саморазряда. Он возникает в АКБ при его бездействии. Основной причиной служит загрязнения поверхности батареи и плохого качества дистиллятора. Скорость саморазряда ускоряется при разрушении свинцовых пластин.

Виды зарядных устройств

Разработано большое количество схем автомобильных зарядных устройств, использующих разные элементные базы и принципиальный подход. По принципу действия приборы заряда разделяются на две группы:

  1. Пуско-зарядные, предназначенные для запуска двигателя при нерабочем аккумуляторе. Кратковременно подавая на клеммы аккумулятора ток большой величины, происходит включение стартера и запуск двигателя, а в дальнейшем заряд батареи происходит от генератора автомобиля. Они выпускаются только на определённое значение тока или с возможностью выставления его величины.
  2. Предпусковые зарядные, к клеммам аккумуляторной батареи подключаются выводы с устройства и подаётся ток длительное время. Его значение не превышает десяти ампер, в течение этого времени происходит восстановление энергии батареи. В свою очередь, они разделяются: на постепенные (время зарядки от 14 до 24 часов), ускоренные (до трёх часов) и кондиционирующие (около часа).

По своей схемотехники выделяются импульсные и трансформаторные устройства. Первого вида используют в работе высокочастотный преобразователь сигнала, характеризуются малыми размерами и весом. Второго вида в качестве основы используют трансформатор с выпрямительным блоком, просты в изготовлении, но обладают большим весом и низким коэффициентом полезного действия (КПД).

Выполнено зарядное устройство для автомобильных аккумуляторов своими руками или приобретено в торговой точке, требования, предъявляемые к нему одинаковы, а именно:

  • стабильность выходного напряжения;
  • высокое значение КПД;
  • защита от короткого замыкания;
  • индикатор контроля заряда.

Одной из главных характеристик прибора заряда является величина тока, которым заряжается батарея. Правильно зарядить аккумулятор и продлить его рабочие характеристики получится только при подборе нужного его значения. При этом важна и скорость заряда. Чем больше ток, тем выше и скорость, но высокое значение скорости приводит к быстрой деградации аккумулятора. Считается, что правильным значением тока будет величина равная десяти процентам от ёмкости батарейки. Ёмкость определяется как величина тока, отдаваемая АКБ за единицу времени, измеряется она в ампер-часах.

Самодельный зарядный прибор

Приспособление для заряда должно быть у каждого автолюбителя, поэтому если нет возможности или желания приобрести готовый прибор, ничего не останется, как сделать зарядку для аккумулятора самостоятельно. Несложно изготовить своими руками как простейшее, так и многофункциональное устройство. Для этого понадобится схема и набор радиоэлементов. Существует также возможность переделать источник бесперебойного питания (ИБП) или компьютерный блок (АТ) в прибор для подзарядки АКБ.

Трансформаторное зарядное устройство

Такое устройство самое простое в сборке и не содержит дефицитных деталей. Схема состоит из трёх узлов:

  • трансформатор;
  • выпрямительный блок;
  • регулятор.

Напряжение из промышленной сети поступает на первичную обмотку трансформатора. Сам трансформатор может использоваться любого вида. Состоит он из двух частей: сердечника и обмоток. Сердечник собирается из стали или феррита, обмотки - из проводникового материала.

Принцип работы трансформатора основан на появлении переменного магнитного поля при прохождении тока по первичной обмотке и передачи его на вторичную. Для получения на выходе требуемого уровня напряжения количество витков во вторичной обмотке делается меньше, по сравнению с первичной. Уровень напряжения на вторичной обмотке трансформатора выбирается равным 19 вольт, а его мощность должна обеспечивать троекратный запас по току заряда.

С трансформатора пониженное напряжение проходит через выпрямительный мост и поступает на реостат, подключённый последовательно к аккумулятору. Реостат предназначен для регулирования величины напряжения и тока, путём изменения сопротивления. Сопротивление реостата не превышает 10 Ом. Величина тока контролируется включённым последовательно перед аккумулятором амперметром. Такой схемой не получится заряжать АКБ с ёмкостью более 50 Ач, так как реостат начинает перегреваться.

Упростить схему можно, убрав реостат, а на входе перед трансформатором установить набор конденсаторов, использующихся как реактивные сопротивления для уменьшения напряжение сети. Чем меньше номинальное значение ёмкости, тем меньше напряжение поступает на первичную обмотку в сети.

Особенность такой схемы в необходимости обеспечения уровня сигнала на вторичной обмотке трансформатора в полтора раза большее, чем рабочее напряжение нагрузки. Такую схему можно использовать и без трансформатора, но это очень опасно. Без гальванической развязки можно получить поражение электрическим током.

Импульсное устройство подзаряда

Достоинство импульсных устройств в высоком КПД и компактных размерах. В основе прибора лежит микросхема с широтно-импульсной модуляцией (ШИМ). Собрать мощное импульсное зарядное устройство своими руками можно по следующей схеме.

В качестве ШИМ контроллера используется драйвер IR2153. После выпрямительных диодов параллельно АКБ ставится полярный конденсатор С1 с ёмкостью в пределах 47−470 мкФ и напряжением не менее 350 вольт. Конденсатор убирает всплески сетевого напряжения и шумы линии. Диодный мост используется с номинальным током более четырёх ампер и с обратным напряжением не менее 400 вольт. Драйвер управляет мощными N-канальными полевыми транзисторами IRFI840GLC, установленными на радиаторах. Ток такой зарядки будет равен до 50 ампер, а выходная мощность до 600 Ватт.

Изготовить импульсное зарядное устройство для автомобиля своими руками можно, используя переделанный компьютерный источник питания формата АТ. В качестве ШИМ контроллера в них используется распространённая микросхема TL494. Сама переделка заключается в увеличении выходного сигнала до 14 вольт. Для этого понадобится правильно установить подстроечный резистор.

Резистор, который соединяется первую ногу TL494 со стабилизированной шиной + 5 В, удаляется, а вместо второго, связанного с 12 вольтовой шиной, впаивается переменный резистор с номиналом 68 кОм. Этим резистором и устанавливается требуемый уровень выходного напряжения. Включение блока питания осуществляется через механический выключатель, согласно указанной на корпусе блока питания схеме.

Устройство на микросхеме LM317

Довольно простая, но стабильно работающая схема зарядки легко выполняется на интегральной микросхеме LM317. Микросхема обеспечивает установку уровня сигнала 13,6 вольт при максимальной силе тока 3 ампера. Стабилизатор LM317 снабжён встроенной защитой от короткого замыкания.

Напряжение на схему прибора подаётся через клеммы от независимого блока питания постоянного напряжения 13−20 вольт. Ток, проходя через индикаторный светодиод HL1 и транзистор VT1, поступает на стабилизатор LM317. С его выхода непосредственно на АКБ через X3, X4. Делителем, собранным на R3 и R4, устанавливается необходимое значение напряжения для открывания VT1. Переменным резистором R4 задаётся ограничение тока подзарядки, а R5 уровень выходного сигнала. Выходное напряжение устанавливается от 13,6 до 14 вольт.

Схему можно максимально упростить, но её надёжность уменьшится.

В ней резистором R2 подбирают ток. В качестве резистора используется мощный проволочный элемент из нихрома. Когда АКБ разряжен, ток заряда максимальный, светодиод VD2 горит ярко, по мере заряда ток начинает спадать и светодиод тускнеет.

Зарядное из источника бесперебойного питания

Сконструировать зарядник можно из обычного бесперебойника даже с неисправностью узла электроники. Для этого удаляется из блока вся электроника, кроме трансформатора. К высоковольтной обмотке трансформатора на 220 В добавляется схема выпрямителя, стабилизации тока и ограничения напряжения.

Выпрямитель собирается на любых мощных диодах, например, отечественных Д-242 и сетевом конденсаторе 2200 мкФ на 35−50 вольт. На выходе получится сигнал с напряжением 18−19 вольт. В качестве стабилизатора напряжения используется микросхема LT1083 или LM317 с обязательной установкой на радиатор.

Подключив аккумуляторную батарею, выставляется напряжение, равное 14,2 вольта. Контролировать уровень сигнала удобно с помощью вольтметра и амперметра. Вольтметр подключается параллельно клеммам батареи, а амперметр последовательно. По мере заряда АКБ его сопротивление будет возрастать, а ток падать. Ещё проще выполнить регулятор с помощью симистора, подключённого к первичной обмотке трансформатора наподобие диммера.

При самостоятельном изготовлении устройства следует помнить про электробезопасность при работе с сетью переменного тока 220 В. Как правило, верно выполненный прибор зарядки из исправных деталей начинает работать сразу, требуется лишь только выставить тока заряда.

Простое тиристорное зарядное устройство.

Устройство с электронным управлением зарядным током, выполненно на базе тиристорного фазоимпульсного регулятора мощности.
Оно не содержит дефицитных деталей, при заведомо рабочих деталях не требует налаживания.
Зарядное устройство позволяет заряжать авто аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток по форме близок к импульсному, кой, как считается, содействует продлению срока службы батареи.
Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С.
Схема прибора показана на рис. 2.60.
Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный moctVDI + VD4.
Узел управления тиристором исполнен на аналоге однопереходного транзистора VTI, VT2. Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1.При крайнем правом по схеме положении его движка зарядный ток станет максимальным, и наоборот.
Диод VD5 оберегает управляющую цепь тиристора VS1 от обратного напряжения, появляющегося при включении тиристора.

Зарядное приспособление в дальнейшем можно дополнить разными автоматическими узлами (отключение по завершении зарядки, поддержание нормального напряжения батареи при продолжительном ее хранении, сигнализации о верной полярности подключения батареи, защита от замыканий выхода и т. д.).
К недочетам прибора можно отнести - колебания зарядного тока при нестабильном напряжении электроосветительной сети.
Как и все подобные тиристорные фазоимпульсные регуляторы, устройство создает помехи радиоприему. Для борьбы с ними надлежит предусмотреть сетевой
LC- фильтр, подобный использующемуся в импульсных сетевых блоках питания.

Конденсатор С2 - К73-11, емкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А заменим на КТ361Б -- КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж - KT50IK, а КТ315Л - на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор
R1 - СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 - любой постоянного тока со шкалой на 10 А. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.
Предохраннтель
F1 - плавкий, но удобно применять и сетевой автомат на 10 А либо автомобильный биметаллический на такой же ток.
Диоды
VD1 + VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).
Диоды выпрямителя и тиристор ставят на теплоотводы, каждый полезной площадью возле 100 см*. Для улучшения теплового контакта устройств с теплоотводами лучше применять теплопроводные пасты.
Заместо тиристора КУ202В подходят КУ202Г - КУ202Е; проверено на практике, что устройство нормально действует и с более мощными тиристорами Т-160, Т-250.
Надлежит заметить, что в качестве теплоотвода тиристора возможно применять непосредственно железную стенку кожуха. Тогда, правда, на корпусе будет минусовой вывод устройства, что в общем-то нежелательно из-за угрозы нечаянных замыканий выходного плюсового провода на корпус. Если укреплять тиристор через слюдяную прокладку, угрозы замыкания не будет, но ухудшится отдача тепла от него.
В приборе может быть применен готовый сетевой понижающий трансформатор нужной мощности с напряжением вторичной обмотки от 18 до 22 В.
Ежели у трансформатора напряжение на вторичной обмотке более 18 В, резистор
R5 надлежит сменить другим, наибольшего сопротивления (к примеру, при 24 * 26 В сопротивление резистора надлежит увеличить до 200 Ом).
В случае, когда вторичная обмотка трансформатора имеет отвод от середины, или есть две однообразные обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше исполнить по обычной двуполупериодной схеме на 2-ух диодах.
При напряжении вторичной обмотки 28 * 36 В можно вообще отказаться от выпрямителя - его роль станет одновременно играть тиристор
VS1 (выпрямление -однополупериодное). Для такового варианта блока питания нужно между резистором R5 и плюсовым проводом подключить разделительный диод КД105Б либо Д226 с любым буквенным индексом (катодом к резистору R5). Выбор тиристора в таковой схеме станет ограничен - подходят только те, которые дозволяют работу под обратным напряжением (к примеру, КУ202Е).
Для описанного устройства подойдет унифицированный трансформатор ТН-61. 3 его вторичных обмотки необходимо соединить согласно последовательно, при этом они способны отдать ток до 8 А.
Все детали прибора, кроме трансформатора Т1, диодов
VD1 + VD4 выпрямителя, переменного резистора R1, предохранителя FU1 и тиристора VS1, смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм.
Чертеж платы представлен в журнале радио № 11 за 2001 год.

Зарядное устройство для автомобильных аккумуляторов.

Ни для кого не ново, если скажу, что у любого автомобилиста в гараже должно быть зарядное устройство для аккумуляторной батареи. Конечно, его можно купить в магазине, но, столкнувшись с этим вопросом, пришел к выводу, заведомо не очень хорошее устройство по приемлемой цене брать не хочется. Встречаются такие, у которых ток заряда регулируется мощным переключателем, который добавляет или уменьшает количество витков во вторичной обмотке трансформатора, тем самым увеличивая или уменьшая зарядный ток, при этом прибор контроля тока в принципе отсутствует. Это наверно самый дешевый вариант зарядника заводского исполнения, ну а толковый девайс стоит не так уж и дешево, цена прямо-таки кусается, поэтому решил найти схему в интернете, и собрать ее самому. Критерии выбора были такие:

Простая схема, без лишних наворотов;
- доступность радиодеталей;
- плавная регулировка зарядного тока от 1 до 10 ампер;
- желательно чтобы это была схема зарядно-тренировочного устройства;
- не сложная наладка;
- стабильность работы (по отзывам тех, кто уже делал данную схему).

Поискав в интернете, наткнулся на промышленную схему зарядного устройства с регулирующими тиристорами.

Все типично: трансформатор, мост (VD8, VD9, VD13, VD14), генератор импульсов с регулируемой скважностью (VT1, VT2), тиристоры в качестве ключей (VD11, VD12), узел контроля заряда. Несколько упростив эту конструкцию, получим более простую схему:

На этой схеме нет узла контроля заряда, а остальное – почти то же самое: транс, мост, генератор, один тиристор, измерительные головки и предохранитель. Обратите внимание, что в схеме стоит тиристор КУ202, он немного слабоват, поэтому чтобы не допустить пробоя импульсами большого тока его необходимо установить на радиатор. Трансформатор - ватт на 150, а можно использовать ТС-180 от старого лампового телевизора.

Регулируемое зарядное устройство с током заряда 10А на тиристоре КУ202.

И еще одно устройство, не содержащее дефицитных деталей, с током заряда до 10 ампер. Оно представляет собой простой тиристорный регулятор мощности с фазоимпульсным управлением.

Узел управления тиристором собран на двух транзисторах. Время, за которое конденсатор С1 будет заряжаться до переключения транзистора, выставляется переменным резистором R7, которым, собственно, и выставляется величина зарядного тока аккумулятора. Диод VD1 служит для защиты управляющей цепи тиристора от обратного напряжения. Тиристор, также как и в предыдущих схемах, ставится на хороший радиатор, или на небольшой с охлаждающим вентилятором. Печатная плата узла управления выглядит следующим образом:

Схема не плохая, но в ней есть некоторые недостатки:
- колебания напряжения питания приводят к колебанию зарядного тока;
- нет защиты от короткого замыкания кроме предохранителя;
- устройство дает помехи в сеть (лечится с помощью LC-фильтра).

Зарядно-восстанавливающее устройство для аккумуляторных батарей.

Это импульсное устройство может заряжать и восстанавливать практически любые типы аккумуляторов. Время заряда зависит от состояния батареи и колеблется в пределах 4 - 6 часов. За счет импульсного зарядного тока происходит десульфатация пластин аккумулятора. Смотрим схему ниже.

В этой схеме генератор собран на микросхеме, что обеспечивает более стабильную его работу. Вместо NE555 можно использовать российский аналог - таймер 1006ВИ1 . Если кому не нравится КРЕН142 по питанию таймера, так ее можно заменить обычным параметрическим стабилизатором, т.е. резистором и стабилитроном с нужным напряжением стабилизации, а резистор R5 уменьшить до 200 Ом . Транзистор VT1 - на радиатор в обязательном порядке, греется сильно. В схеме применен трансформатор со вторичной обмоткой на 24 вольта. Диодный мост можно собрать из диодов типа Д242 . Для лучшего охлаждения радиатора транзистора VT1 можно применить вентилятор от компьютерного блока питания или охлаждения системного блока.

Восстановление и зарядка аккумулятора.

В результате неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, и он выходит из строя.
Известен способ восстановления таких батарей при заряде их "ассимметричным" током. При этом соотношение зарядного и разрядного тока выбрано 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.


Рис. 1. Электрическая схема зарядного устройства

На рис. 1 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.

Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.

В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22...25 В.
Измерительный прибор РА1 подойдет со шкалой 0...5 А (0...3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

В схеме применяется транзистор с большим коэффициентом усиления (1000...18000), который можно заменить на КТ825 при изменении полярности включения диодов и стабилитрона, так как он другой проводимости (см. рис. 2). Последняя буква в обозначении транзистора может быть любой.


Рис. 2. Электрическая схема зарядного устройства

Для защиты схемы от случайного короткого замыкания на выходе установлен предохранитель FU2.
Резисторы применены такие R1 типа С2-23, R2 - ППБЕ-15, R3 - С5-16MB, R4 - ПЭВ-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любой, с напряжением стабилизации от 7,5 до 12 В.
обратного напряжения.

Какой провод лучше использовать от зарядного устройства до аккумулятора.

Конечно, лучше брать гибкий медный многожильный, ну а сечение нужно выбрать из расчета какой максимальный ток будет проходить по этим проводам, для этого смотрим табличку:

Если вас интересует схемотехника импульсных зарядно-восстановительных устройств с применением таймера 1006ВИ1 в задающем генераторе - прочтите эту статью:

В. ВОЕВОДА, с. Константиновка Амурской обл.
В настоящее время рынок предлагает автомобилисту множество разнообразных зарядных устройств ~ автоматических и полуавтоматических, в том числе и простых по исполнению, - но стоимость их весьма велика. Однако, если владелец автомобиля знаком с азами электроники, ему вполне можно взяться за самостоятельное изготовление несложного зарядного устройства.

Предлагаю вниманию читателей простое устройство с электронным управлением зарядным током, выполненное на основе тринисторного фазоимпульсного регулятора мощности. Оно позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Устройство работоспособно при температуре окружающей среды от -35 до +35 °С. Оно не содержит дефицитных деталей, при заведомо исправных элементах не требует налаживания. Для него может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В. Годится и трансформатор с обмотками без выводов. Зарядный ток по форме близок к импульсному, который, как считают некоторые радиолюбители, способствует продлению срока службы батареи.
Зарядное устройство в дальнейшем можно дополнить различными автоматическими узлами (отключение по окончании зарядки, поддержание нормального напряжения батареи при длительном ее хранении, сигнализации о правильной полярности подключения батареи, защита от замыканий выхода и т. д.).

Недостаток устройства - колебания зарядного тока при нестабильном напряжении электроосветительной сети. Как и все подобные тринисторные фазоимпульсные регуляторы, устройство создает помехи радиоприему. Для борьбы с ними следует предусмотреть сетевой LC-фильтр, аналогичный применяемому в импульсных сетевых блоках питания.
Схема устройства показана на рис. 1. Оно представляет собой традиционный тринисторный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VD1-VD4. Узел управления тринистором выполнен на аналоге однопереходного транзистора VT1VT2. Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.
Диод VD5 защищает управляющую цепь тринистора от обратного напряжения, возникающего при включении тринистора VS1.
Все детали устройства, кроме трансформатора Т1, диодов VD1 -VD4 выпрямителя, переменного резистора R1, предо¬хранителя FU1 и тринистора VS1, смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм. Чертеж платы представлен на рис. 2.
Конденсатор С2-К73-11, емкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП. Диоды VD1-VD4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213). Вместо тринистора КУ202В подойдут КУ202Г- КУ202Е; проверено на практике, что устройство нормально работает и с более мощными тринисторами Т-160, Т-250.
Транзистор КТ361А заменим на КТ361Б-КТ361Е, КТ3107А, КТ502В, КТ502Г, КТ501Ж-КТ501К, а КТ315А - на КТ315Б-КТ315Д, КТ312Б, КТ3102А, КТ503В-КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор R1 - СП-1, СПЗ-З0а или СПО-1. Амперметр РА1 - любой постоянного тока со шкалой на 10А. Его можно изготовить самостоятельно из любого миллиамперметра, подоб¬рав шунт по образцовому амперметру.
Предохранитель FU1 - плавкий, но удобно использовать и сетевой авто¬мат на 10А или автомобильный биметаллический на такой же ток.
Зарядное устройство монтируют в прочном металлическом либо пластмассовом кожухе подходящих размеров. Диоды выпрямителя и тринистор устанавливают на теплоотводы, каждый полезной площадью около 100 см2. Для улучшения теплового контакта приборов с теплоотводами желательно использовать теплопроводные пасты.
Следует заметить, что в качестве теплоотвода тринистора допустимо использовать непосредственно металлическую стенку кожуха. Тогда, правда, на корпусе будет минусовой вывод устройства, что в общем-то нежелательно из-за опасности случайных замыканий выходного плюсового провода на корпус. Если крепить тринистор через слюдяную прокладку, опасности замыкания не будет, но ухудшится отдача тепла от него.
Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (при 24...26 В до 200 Ом). В случае, когда вторичная об¬мотка трансформатора имеет отвод от середины, или есть две одинаковые обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше выполнить по стандартной дву-полупериодной схеме на двух диодах.
При напряжении вторичной обмотки 28...36 В можно вообще отказаться от выпрямителя - его роль будет одновременно играть тринистор VS1 (выпрямление - однополупериодное). Для такого варианта блока питания необходимо между выводом 2 платы и плюсовым проводом включить разделительный диод КД105Б или Д226 с любым буквенным индексом (катодом к плате). К тому же выбор тринистора здесь ограничен - подойдут только те, которые допускают работу под обратным напряжением (например, КУ202Е).
От редакции. Для описанного устройства подойдет унифицированный трансформатор ТН-61. Три его вторичных обмотки нужно соединить согласно последовательно; они способны отдать ток до 8 А.
Радио 2001 №11

Немножко отсебятины:
1. Трансформатор ТС-250-2П от лампового телевизора, убрать все вторичные обмотки. Намотать 40 витков в два провода ПЭВ-1,2мм (приблизительно 25-27В).
2. Диодный мост из КД213. Транзисторы можно использовать КТ814 и КТ815. Тиристор КУ202Н. R5-180 Om. Вместо С1 использовать сетевой фильтр от БП компьютера или UPS-a, С2 - 0,5 мкфх250В
3. Можно дополнить защитой от КЗ. R1 надо убрать. На отключающие контакты можно повесить светодиод, будет гореть при КЗ. Если использовать эту схему, то аккумулятор должен быть заряжен, хотя-бы, на 70% , иначе реле не сработает и зарядка не начнется. Для разряженных аккумуляторов эта защита не подойдет или же надо закорачивать контакты К1.1.

4. ...и защитой от переполюсовки

Для ЗУ автомобильных аккумуляторных батарей необходимо выбрать реле на номинальное напряжение 12 Б с допустимым током через контакты не менее 20 А. Этим условиям удовлетворяет реле РЭН-34 ХП4.500.030-01, контакты которого следует включить параллельно.

6. Предохранитель можно сделать исходя из:

7. Индикатор - вольтметр самый простой

З.Ы. ЗУ простое, делается за 3-4 дня неспеша после работы, применяемые детали - не дефицит, вобщем - доволен. Written.

Добавь статью в закладки
Похожие материалы

Автовладельцы часто сталкиваются с проблемой разряда аккумулятора . Если это происходит далеко от СТО, автомагазинов и АЗС, можно из доступных деталей самостоятельно изготовить устройство для заряда аккумуляторной батареи. Рассмотрим, как сделать зарядное устройство для автомобильного аккумулятора своими руками, обладая минимальными знаниями электромонтажных работ.

Такое устройство лучше применять только в критических ситуациях. Однако, если вы знакомы с электротехникой, правилами электро- и пожаробезопасности, имеете навыки электроизмерений и монтажных работ, самодельное зарядное устройство вполне может заменить заводской блок.

Причины и признаки разряда АКБ

В процессе эксплуатации аккумуляторной батареи при работе двигателя идет постоянный подзаряд АКБ от генератора автомобиля. Проверить процесс заряда можно, подключив к клеммам аккумулятора мультиметр при заведенном двигателе, измеряя напряжение зарядки автомобильного аккумулятора. Заряд считается нормальным, если напряжение на клеммах составляет от 13,5 до 14,5 Вольт.

Для полного заряда требуется проехать на авто не менее 30 километров или примерно полчаса в городском ритме движения.

Напряжение нормально заряженного аккумулятора во время стоянки должно быть не менее 12,5 Вольта. В том случае, если напряжение менее 11,5 Вольта , двигатель авто может не запуститься во время старта. Причины разряда аккумуляторной батареи:

  • АКБ имеет значительный износ (более 5-ти лет эксплуатации );
  • неправильная эксплуатация аккумулятора, приводящая к сульфатации пластин;
  • длительная стоянка транспортного средства, особенно в холодное время года;
  • городской ритм движения авто с частыми остановками, когда АКБ не успевает достаточно зарядиться;
  • невыключенные электроприборы автомобиля во время стоянки;
  • повреждение электропроводки и оборудования автомобиля;
  • утечки по электроцепям.

Многие автовладельцы в комплекте бортового инструмента не имеют средств для измерения напряжения АКБ (вольтметр, мультиметр, пробник, сканер ). В таком случае можно руководствоваться косвенными признаками разряда АКБ:

  • тусклое свечение лампочек на приборной панели при включении зажигания;
  • отсутствие вращения стартера при запуске двигателя;
  • громкие щелчки в районе стартера, погасание лампочек на приборной панели при запуске;
  • полное отсутствие реакции авто на включение зажигания.

При появлении перечисленных признаков в первую очередь необходимо проверить клеммы АКБ, при необходимости их почистить и поджать. В холодное время года можно попробовать занести на некоторое время аккумуляторную батарею в теплое помещение и его прогреть.

Можно попробовать «прикурить» авто от другого автомобиля. Если эти методы не помогают или невозможны, приходится воспользоваться зарядным устройством.

Универсальное зарядное устройство своими руками. Видео:

Принцип действия

Большинство устройств заряжают АКБ постоянными или импульсными токами. Сколько ампер нужно для зарядки автомобильного аккумулятора? Ток заряда выбирают равным одной десятой от емкости аккумуляторной батареи. При емкости 100 А*ч ток зарядки автомобильного аккумулятора будет 10 Ампер. АКБ придется заряжать около 10 часов до полного заряда.

Зарядка аккумулятора авто большими токами может привести к процессу сульфатации. Чтобы этого избежать, лучше производить заряд АКБ малыми токами, но более продолжительное время.

Импульсные устройства значительно уменьшают эффект сульфатации. Некоторые импульсные зарядные устройства имеют режим десульфатации, который позволяет восстанавливать работоспособность АКБ. Он заключается в последовательном заряде-разряде импульсными токами по специальному алгоритму.

Заряжая аккумуляторную батарею, нельзя допустить перезаряд. Он может привести к закипанию электролита, сульфатации пластин. Необходимо, чтобы устройство имело собственную систему контроля, измерения параметров и аварийного отключения.

Начиная с 2000-х на автомобили стали устанавливать специальные типы аккумуляторных батарей: AGM и гелевые. Зарядка автомобильного аккумулятора таких типов отличается от обычного режима.

Как правило, он трехэтапный. До определенного уровня заряд идет большим током. Затем ток уменьшается. Окончательный заряд происходит еще меньшими импульсными токами.

Зарядка автомобильного аккумулятора в домашних условиях

Часто в водительской практике возникает ситуация, когда, поставив машину возле дома вечером, утром обнаруживается, что АКБ разряжен. Что можно сделать в такой ситуации, когда под рукой нет паяльника, никаких деталей, а завестись надо?

Обычно на аккумуляторе осталась небольшая емкость, его просто необходимо немного «подтянуть», чтобы заряда хватило для запуска двигателя. В этом случае может помочь блок питания от какой-нибудь бытовой или оргтехники, например, ноутбука.

Зарядка от блока питания ноутбука

Напряжение, которое производит блок питания ноутбука обычно 19 Вольт, ток до 10 Ампер. Этого хватает, чтобы зарядить АКБ. Но напрямую подключать блок питания к аккумулятору НЕЛЬЗЯ. Необходимо последовательно в цепь заряда включить ограничивающее сопротивление. В качестве него можно взять автомобильную электролампочку, лучше для освещения салона. Ее можно приобрести на ближайшей автозаправке.

Обычно средний контакт разъема положительный. К нему подключается лампочка. Ко второму выводу лампочки подключается + АКБ.

Отрицательная клемма подключается к отрицательному выводу блока питания. На блоке питания обычно имеется шильдочка, показывающая полярность разъема. Пары часов зарядки таким методом достаточно, чтобы запустить двигатель.

Схема простого зарядного устройства для автомобильного аккумулятора.

Заряд от бытовой сети

Более экстремальный метод зарядки – непосредственно от бытовой сети. Его применяют только в критической ситуации, используя максимальные меры электробезопасности. Для этого понадобится осветительная лампа (не энергосберегающая ).

Можно вместо нее использовать электроплитку. Также необходимо приобрести выпрямительный диод. Такой диод можно «позаимствовать» из неисправной энергосберегающей лампы. На это время напряжение, подаваемое в квартиру, лучше обесточить. Схема представлена на рисунке.

Ток заряда при мощности лампы 100 Ватт будет приблизительно 0,5 А. За ночь АКБ подзарядится всего на несколько ампер-часов, но этого может хватить для запуска. Если соединить параллельно три лампы, то АКБ зарядится в три раза больше. Если вместо лампочки подключить электроплитку (на самой маленькой мощности ), то время заряда существенно уменьшится, но это очень опасно. К тому же может пробиться диод, тогда возможно замыкание АКБ. Методы заряда от 220 В опасны.

Зарядка для автомобильных аккумуляторов своими руками. Видео:

Самодельное зарядное устройство для автомобильного аккумулятора

Перед тем как сделать зарядное устройство для автомобильного аккумулятора, следует оценить свой опыт электромонтажных работ, знания по электротехнике, на основании этого приступить к выбору схемы зарядного устройства для автомобильного аккумулятора.

Можно посмотреть в гараже, возможно, есть старые устройства или блоки. Для устройства подходит блок питания от старого компьютера. В нем есть почти все:

  • разъем 220 В;
  • выключатель питания;
  • электросхема;
  • вентилятор охлаждения;
  • выводы подключения.

Напряжения на нем стандартные: +5 В, -12 В и +12 Вольт. Для заряда АКБ лучше использовать провод +12 Вольт, 2 Ампера. Выходное напряжение необходимо поднять до уровня +14,5 – +15,0 Вольт. Обычно это удается сделать, изменив номинал сопротивления в цепи обратной связи (около 1 килоОма ).

Ограничивающее сопротивление можно не ставить, электронная схема самостоятельно отрегулирует ток заряда в пределах 2 Ампер. Нетрудно подсчитать, что для полного заряда АКБ 50 А*ч потребуется около суток. Внешний вид устройства.

Можно подобрать или купить на блошином рынке сетевой трансформатор с напряжением вторичной обмотки от 15 до 30 Вольт . Такие применялись в старых телевизорах.

Трансформаторные устройства

Простейшая схема устройства с трансформатором.

Ее недостатком является необходимость ограничения тока в выходной цепи и связанные с этим большие потери мощности и нагревание резисторов. Поэтому для регулировки тока используют конденсаторы.

Теоретически, рассчитав номинал конденсатора, можно не использовать силовой трансформатор, как показано на схеме.

При покупке конденсаторов следует выбирать соответствующий номинал с напряжением 400 В и более.

В практике большее применение получили устройства с регулированием тока.

Можно выбрать схемы импульсных самодельных зарядных устройств для автомобильного аккумулятора. Они более сложны схемотехнически, требуют определенных навыков при монтаже. Поэтому, если вы не обладаете специальными навыками, лучше купить заводской блок.

Импульсные зарядные устройства

Импульсные зарядные устройства имеют ряд преимуществ:

Принцип действия импульсных устройств основан на преобразовании переменного напряжения бытовой электросети в постоянное при помощи диодной сборки VD8. Затем постоянное напряжение преобразуется в импульсы высокой частоты и амплитуды. Импульсный трансформатор Т1 вновь преобразует сигнал в постоянное напряжение, которое заряжает аккумулятор.

Так как обратное преобразование ведется на высокой частоте, то габариты трансформатора значительно меньше. Обратная связь, необходимая для контроля параметров заряда, обеспечивается оптроном U1.

Несмотря на кажущуюся сложность устройства, при правильной сборке блок начинает работать без дополнительной регулировки. Такое устройство обеспечивает ток заряда до 10 Ампер.

При заряде АКБ с помощью самодельного устройства необходимо:

  • устройство и АКБ располагать на токонепроводящей поверхности;
  • соблюдать требования электробезопасности (применять перчатки, резиновый коврик, инструмент с электроизоляционным покрытием );
  • не оставлять надолго включенное зарядное устройство без контроля, следить за напряжением и температурой АКБ, зарядным током.