Регулятор мощности с обратной связью от тахогенератора. Регулятор оборотов двигателя электроинструмента - схема и принцип работы

Коллекторные двигатели часто можно встретить в бытовых электроприборах и в электроинструменте: стиральная машина, болгарка, дрель, пылесос и т. д. Что совсем не удивительно, ведь коллекторные двигатели позволяют получать и высокие обороты, и большой крутящий момент (в том числе высокий пусковой момент) — что и нужно для большинства электроинструментов.

При этом коллекторные двигатели могут питаться как постоянным током (в частности - выпрямленным), так и переменным током от бытовой сети. Для управления скоростью вращения ротора коллекторного двигателя применяют регуляторы оборотов, о них и пойдет речь в данной статье.

Для начала вспомним устройство и принцип работы коллекторного двигателя. Коллекторный двигатель включает в себя обязательно следующие части: ротор, статор и щеточно-коллекторный коммутационный узел. Когда питание подается на статор и на ротор, их магнитные поля начинают взаимодействовать, ротор начинает в итоге вращаться.

Питание на ротор подается через графитовые щетки, плотно прилегающие к коллектору (к ламелям коллектора). Для изменения направления вращения ротора, необходимо изменить фазировку напряжения на статоре или на роторе.

Обмотки ротора и статора могут питаться от разных источников или же могут быть соединены параллельно либо последовательно друг с другом. Так различаются коллекторные двигатели параллельного и последовательного возбуждения. Именно коллекторные двигатели последовательного возбуждения можно встретить в большинстве бытовых электроприборов, поскольку такое включение позволяет получить устойчивый к перегрузкам двигатель.

Говоря о регуляторах оборотов, прежде всего остановимся на самой простой тиристорной (симисторной) схеме (смотрите ниже). Данное решение применяется в пылесосах, стиральных машинах, болгарках, и показывает высокую надежность при работе в цепях переменного тока (особенно от бытовой сети).

Работает данная схема достаточно незатейливо: на каждом периоде сетевого напряжения заряжается через резистор до напряжения отпирания динистора, присоединенного к управляющему электроду основного ключа (симистора), после чего открывается и пропускает ток к нагрузке (к коллекторному двигателю).

Регулируя время зарядки конденсатора в цепи управления открыванием симистора, регулируют среднюю мощность подаваемую на двигатель, соответственно регулируют обороты. Это простейший регулятор без обратной связи по току.

Симисторная схема похожа на обычный , обратной связи в ней нет. Чтобы появилась обратная связь по току, например чтобы удерживать приемлемую мощность и не допускать перегрузок, необходима дополнительная электроника. Но если рассмотреть варианты из простых и незатейлевых схем, то за симисторной схемой следует реостатная схема.

Реостатная схема позволяет эффективно регулировать обороты, но приводит к рассеиванию большого количества тепла. Здесь требуется радиатор и эффективный отвод тепла, а это потери энергии и низкий КПД в итоге.

Более эффективны схемы регуляторов на специальных схемах управления тиристором или хотя бы на интегральном таймере. Коммутация нагрузки (коллекторного двигателя) на переменном токе осуществляется силовым транзистором (или тиристором), который открывается и закрывается один или несколько раз в течение каждого периода сетевой синусоиды. Так регулируется средняя мощность, подаваемая на двигатель.

Схема управления питается от 12 вольт постоянного напряжения от собственного источника или от сети 220 вольт через гасящую цепь. Такие схемы подходят для управления мощными двигателями.

Принцип регулирования с микросхемами на постоянном токе — это конечно . Транзистор, например, открывается с строго заданной частотой в несколько килогрец, но длительность открытого состояния регулируется. Так, вращая ручку переменного резистора, устанавливают скорость вращения ротора коллекторного двигателя. Данный метод удобен для удержания малых оборотов коллекторного двигателя под нагрузкой.

Более качественное управление — именно регулировка по постоянному току. Когда ШИМ работает на частоте порядка 15 кГц, регулируя ширину импульсов, управляют напряжением при примерно одном и том же токе. Скажем, регулируя постоянное напряжение в диапазоне от 10 до 30 вольт, получают разные обороты при токе порядка 80 ампер, добиваясь требуемой средней мощности.

Если вы хотите изготовить простой регулятор для коллекторного двигателя своими руками без особых запросов к обратной связи, то можно выбрать схему на тиристоре. Потребуется лишь паяльник, конденсатор, динистор, тиристор, пара резисторов и провода.

Если же нужен более качественный регулятор с возможностью поддержания устойчивых оборотов при нагрузке динамического характера, присмотритесь к регуляторам на микросхемах с обратной связью, способным обрабатывать сигнал с тахогенератора (датчика скорости) коллекторного мотора, как это реализовано например в стиральных машинах.

Андрей Повный

Не каждая современная дрель или болгарка оснащена заводским регулятором оборотов, и чаще всего регулировка оборотов не предусмотрена вовсе. Тем не менее, как болгарки, так и дрели построены на базе коллекторных двигателей, что позволяет каждому их владельцу, маломальски умеющему обращаться с паяльником, изготовить собственный регулятор оборотов из доступных электронных компонентов, хоть из отечественных, хоть из импортных.

В данной статье мы рассмотрим схему и принцип работы простейшего регулятора оборотов двигателя электроинструмента, и единственное условие — двигатель должен быть коллекторным — с характерными ламелями на роторе и щетками (которые порой искрят).

Приведенная схема содержит минимум деталей, и подойдет для электроинструмента мощностью до 1,8 кВт и выше, для дрели или болгарки. Похожая схема используется для регулировки оборотов в автоматических стиральных машинах, в которых стоят коллекторные высокоскоростные двигатели, а также в диммерах для ламп накаливания. Подобные схемы, в принципе, позволят регулировать температуру нагрева жала паяльника, электрического обогревателя на базе ТЭНов и т. д.

Потребуются следующие радиоэлектронные компоненты:

    Резистор постоянный R1 - 6,8 кОм, 5 Вт.

    Переменный резистор R2 - 2,2 кОм, 2 Вт.

    Резистор постоянный R3 - 51 Ом, 0,125 Вт.

    Конденсатор пленочный C1 - 2 мкф 400 В.

    Конденсатор пленочный C2 - 0,047 мкф 400 вольт.

    Диоды VD1 и VD2 - на напряжение до 400 В, на ток до 1 А.

    Тиристор VT1 - на необходимый ток, на обратное напряжение не менее 400 вольт.


В основе схемы — тиристор. Тиристор представляет собой полупроводниковый элемент с тремя выводами: анод, катод, и управляющий электрод. После подачи на управляющий электрод тиристора короткого импульса положительной полярности, тиристор превращается в диод, и начинает проводить ток до тех пор, пока в его цепи этот ток не прервется или не сменит направление.

После прекращения тока или при смене его направления, тиристор закроется и перестанет проводить ток, пока не будет подан следующий короткий импульс на управляющий электрод. Ну а поскольку напряжение в бытовой сети переменное синусоидальное, то каждый период сетевой синусоиды тиристор (в составе данной схемы) станет отрабатывать строго начиная с установленного момента (в установленной фазе), и чем меньше во время каждого периода тиристор будет открыт, тем ниже будут обороты электроинструмента, а чем, соответственно, дольше тиристор будет открыт, тем выше будут обороты.

Как видите, принцип прост. Но применительно к электроинструменту с коллекторным двигателем, схема работает хитрее, и об этом мы расскажем далее.

Итак, в сеть здесь включены параллельно: измерительная цепь управления и силовая цепь. Измерительная цепь состоит из постоянного и переменного резисторов R1 и R2, из конденсатора C1, и диода VD1. Для чего нужна эта цепь? Это делитель напряжения. Напряжение с делителя, и что важно, противо-ЭДС с ротора двигателя, складываются в противофазе, и формируют импульс для открывания тиристора. Когда нагрузка постоянна, то и время открытого состояния тиристора постоянно, следовательно обороты стабилизированы и постоянны.

Как только нагрузка на инструмент, и следовательно на двигатель, увеличивается, то величина противо-ЭДС уменьшается, поскольку обороты снижаются, значит сигнал на управляющий электрод тиристора возрастает, и открывание происходит с меньшей задержкой, то есть мощность подводимая к двигателю возрастает, увеличивая упавшие обороты. Так обороты сохраняются постоянными даже под нагрузкой.

В результате совместного действия сигналов от противо-ЭДС и с резистивного делителя, нагрузка не сильно влияет на обороты, а без регулятора это влияние было бы существенным. Таким образом при помощи данной схемы достижима устойчивая регулировка оборотов в каждом положительном полупериоде сетевой синусоиды. При средних и малых скоростях вращения этот эффект более выражен.

Однако, при повышении оборотов, то есть при повышении напряжения, снимаемого с переменного резистора R2, стабильность поддержания скорости постоянной снижается.

Лучше на этот случай предусмотреть шунтирующую кнопку SA1 параллельно тиристору. Функция диодов VD1 и VD2 - обеспечение однополупериодного режима работы регулятора, так как напряжения с делителя и с ротора сравниваются лишь в отсутствие тока через двигатель.

Конденсатор C1 расширяет зону регулирования на малых скоростях, а конденсатор C2 снижает чувствительность к помехам от искрения щеток. Тиристор нужен высокочувствительный, чтобы ток менее 100 мкА смог бы его открыть.

В любом современном электроинструменте или бытовом приборе используется коллекторный двигатель. Это связано с их универсальностью, т. е. способностью работать как от переменного, так и от постоянного напряжения. Ещё одно преимущество заключается эффективном пусковом моменте.

Однако высокая частота оборотов коллекторного двигателя устраивает далеко не всех пользователей. Для плавности пуска и возможности менять частоту вращений был изобретён регулятор , который вполне возможно изготовить своими руками.

Принцип работы и разновидности коллекторных двигателей

Каждый электродвигатель состоит из коллектора, статора, ротора и щёток. Принцип его работы довольно прост:

Помимо стандартного устройства также существуют:

Устройство регулятора

В мире существует множество схем таких устройств. Тем не менее всех их можно разделить на 2 группы: стандартные и модифицированные изделия.

Стандартное устройство

Типичные изделия отличаются простотой в изготовлении идинистора, хорошей надёжностью при изменении оборотов двигателя. Как правило, такие модели основываются на тиристорных регуляторах. Принцип работы подобных схем достаточно прост:

Таким образом, происходит регулировка оборотов коллекторного двигателя. В большинстве случаев подобную схему используют в зарубежных бытовых пылесосах. Однако следует знать, что такой регулятор оборотов не обладает обратной связью. Поэтому при изменении нагрузки придётся настраивать обороты электродвигателя.

Изменённые схемы

Конечно, стандартное устройство устраивает многих любителей регуляторов оборотов «покопаться» в электронике. Однако, без прогресса и улучшения изделий мы бы до сих пор жили в каменном веке. Поэтому постоянно изобретаются более интересные схемы, которые с удовольствием применяют многие производители.

Чаще всего используются реостатные и интегральные регуляторы. Как понятно из названия, первый вариант основан на реостатной схеме. Во втором же случае применяется интегральный таймер.

Реостатные отличаются эффективностью в смене количества оборотов коллекторного двигателя. Высокая эффективность обусловлена силовыми транзисторами, которые забирают часть напряжения. Таким образом, снижается поступление тока и двигатель работает с меньшим усердием.

Видео: устройство регулятора оборотов с поддержанием мощности

Главный недостаток такой схемы заключается в большом объёме выделяемого тепла. Поэтому для бесперебойной работы, регулятор должен постоянно охлаждаться. Притом охлаждение устройства должно быть интенсивным.

Иной подход реализован в интегральном регуляторе, где за нагрузку отвечает интегральный таймер. Как правило, в подобных схемах используются транзисторы практически любых наименований. Это связано с тем, что в составе имеется микросхема, обладающая большими значениями выходного тока.

Если нагрузка меньше 0,1 ампера, то всё напряжение поступает прямо на микросхему в обход транзисторов. Однако для эффективной работы регулятора необходимо, чтобы на затворе было напряжение 12В. Поэтому электроцепь и напряжение самого питания должно соответствовать этому диапазону.

Обзор типичных схем

Регулировать вращения вала электродвигателя малой мощности можно посредством последовательного соединения резистора питания с отсутствие. Однако у такого варианта имеется очень низкий КПД и отсутствие возможности плавного изменения скорости. Чтобы избежать такой неприятности, следует рассмотреть несколько схем регулятора, которые применяются чаще всего.

Как известно, ШИМ имеет постоянную амплитуду импульсов. Кроме того, амплитуда идентична напряжению питания. Следовательно, электродвигатель не остановится, даже работая на малых оборотах.

Второй вариант аналогичен первому. Единственное отличие, что в качестве задающего генератора используется операционный усилитель. Этот компонент имеет частоту 500 Гц и занимается выработкой импульсов, имеющих треугольную форму. Регулировка также осуществляется переменным резистором.

Как сделать своими руками

Если нет желания тратиться на приобретение готового устройства, его можно изготовить самостоятельно. Таким образом, можно не только сэкономить деньги, но и получить полезный опыт. Итак, для изготовления тиристорного регулятора потребуется:

  • паяльник (для проверки работоспособности);
  • провода;
  • тиристор, конденсаторы и резисторы;
  • схема.

Как видно по схеме, регулятором контролируется только 1 полупериод. Однако для тестирования работоспособности на обычном паяльнике этого будет вполне достаточно.

Если знаний по расшифровке схемы недостаточно, можно ознакомиться с текстовым вариантом:

Использование регуляторов позволяет более экономично использовать электродвигатели. В определённых ситуациях такое устройство можно изготовить самостоятельно. Однако для более серьёзных целей (например, контроля оборудования для отопления) лучше приобрести готовую модель. Благо, на рынке есть широкий выбор таких изделий, а цена вполне демократичная.

Качественный и надёжный контроллер скорости вращения для однофазных коллекторных электродвигателей можно сделать на распространённых деталях буквально за 1 вечер. Эта схема имеет встроенный модуль обнаружения перегрузки, обеспечивает мягкий пуск управляемого двигателя и стабилизатор скорости вращения мотора. Работает такой блок с напряжением как 220, так и 110 вольт.

Технические параметры регулятора

  • напряжение питания: 230 вольт переменного тока
  • диапазон регулирования: 5…99%
  • напряжение нагрузки: 230 В / 12 А (2,5 кВт с радиатором)
  • максимальная мощность без радиатора 300 Вт
  • низкий уровень шума
  • стабилизация оборотов
  • мягкий старт
  • размеры платы: 50×60 мм

Принципиальная электросхема


Схема регулятор мотора на симисторе и U2008

Схема модуля системы регулирования основана на генераторе ШИМ импульсов и симисторе управления мотором — классическая схемотехника для подобных устройств. Элементы D1 и R1 обеспечивают ограничение величины напряжения питания до значения безопасной для питания микросхемы генератора. Конденсатор C1 отвечает за фильтрацию напряжения питания. Элементы R3, R5 и P1 являются делителем напряжения с возможностью его регулирования, который используется для задания величины мощности, подаваемой в нагрузку. Благодаря применению резистора R2, непосредственно входящего в цепь поступления на м/с фазы, внутренние блоки синхронизированы с симистором ВТ139.


Печатная плата

На следующем рисунке показано расположение элементов на печатной плате. Во время монтажа и запуска следует обратить внимание на обеспечение условий безопасной работы — регулятор имеет питание от сети 220В и его элементы непосредственно подключены к фазе.

Увеличение мощности регулятора

В испытательном варианте был применен симистор BT138/800 с максимальным током 12 А, что дает возможность управления нагрузкой более 2 кВт. Если необходимо управление ещё большими токами нагрузки — советуем тиристор установить за пределами платы на большом радиаторе. Также следует помнить о правильном выборе предохранителя FUSE в зависимости от нагрузки.

Кроме управления оборотами электромоторов, можно без каких-либо переделок использовать схему для регулировки яркости ламп.