Блог от said_t. Выравнивание заряда батарей обеспечивает долгое время работы и продлевает срок службы Зарядка li ion аккумуляторов с балансировкой

Сейчас на рынке полно зарядных устройств. Автоматы и нет, с измерением емкости и без него. Большинство зарядных устройств универсальны и могут заряжать элементы любой химии. Литий-ион и литий-полимер все чаще применяют в разных устройствах.
Не так давно я переделывал аккумулятор шуруповерта на литий-ионные элементы формата 18650. Заряжаю его умным зарядным устройством Turnigy. Но данное зарядное есть не у каждого.

Понадобится для сборки

Принял решение, собрать простое зарядное устройство с балансиром для литий-иона. Зарядное устройство имеет 3 одинаковых независимых канала. Им можно заряжать от одного элемента до трех. Если нужно, можно добавлять любое количество каналов. У меня же их три, то есть 3S или 11.1 вольт.
Корпусом для балансирующего зарядного устройства является корпус от сгоревшего роутера D-link. Если есть возможность, берите корпус побольше, очень тесно получается в нем работать.

Одним из главным компонентном, являются блоки питания каждого канала. Их роль выполняю платы зарядных устройств планшетов, с выходом 5 Вольт и током от 1 Ампера (или можно купить на Али Экспресс - .


Контроллерами заряда служат платы из Китая - . На каждый канал, свой контроллер. У меня платы без защиты, но она в данном случае не нужна. Можно применять платы контроллеров вместе с разъемами, у меня на двух они отсутствуют, сняты для других проектов. Цена на данные модули копеечная. Если занимаетесь доработкой устройств на литий-ионе и литий-полимере, то данные контроллеры незаменимы.

Изготовление балансировочного зарядного устройства

Платы контроллеров заряда нужно припаять к выходам плат зарядок. Можно и отдельно. Я припаял на толстые жилы от силового кабеля, так конструкция более жесткая.


На платах контроллеров заряда имеются светодиоды, которые индицируют заряд и окончание заряда. Их нужно выпаять. Вместо них будут обычные светодиоды, разного цвета. Они будут прикреплены к окошкам, где раньше моргали светодиоды роутера.


К светодиодам припаял провода от старого шлейфа жесткого диска компьютера. Если есть светодиоды с общим анодом(плюсом), то лучше применить их. У меня таких не оказалось, применил что есть.


На место старых светодиодов, припаиваем шлейфы со светодиодами. На фото у меня зеленый светодиод на 3 мм. Пришлось заменить, оказались паленые, не проверил перед распайкой.


Для задней панели нужно вырезать накладку. В ней проделываем пропилы под выключатель питания и выходной разъем на 4 пина. Разъем снял со старого жесткого диска. Можно применить любой, на нужное количество пинов, с током 1-2 Ампера.
Выключатель снял со старого блока питания компьютера. Накладку прикручиваем на два винта, для жесткости.


Выходной разъем приклеиваем на эпоксидный клей или соду с супер клеем. Я для быстроты приклеил и одним и другим.
Плата зарядок с контроллерами, приклеил на термо клей. Но перед фиксацией припаял сетевые проводочки.


Один из сетевых проводочков, припаиваем к выключателю. Второй, непосредственно к второму проводу сетевого шнура.


Теперь приклеиваем светодиоды. Я клеил термо клеем, можно и содой с супер клеем.


Распаиваем выходные перемычки.
Плюс первого контроллера на первую ножку выходного разъема. Минус его на вторую ножку и соединяем с плюсом второго контроллера. И так далее.


Корпус скручиваем и откладываем в сторону.


Сделаем провод под данной зарядное устройство.
Применил два отрезка проводов от компьютерного блока питания. Спаял в порядке с первого контакта одного разъема к контакту второго.


Подключаем зарядное устройство к аккумулятору шуруповерта (). Красный светодиод индицирует о идущем процессе заряда. По окончанию заряда, загорается зеленый светодиод. Соответственно загораются значки на корпусе: Wi-Fi, второй и четвертый компьютеры.


Вот такое зарядное устройство у нас получилось. Затраты минимальны, а польза большая.
Данным устройством можно заряжать сборки на литий-полимерах, те которые применяют моделисты в своем транспорте. Главное сделать правильный провод зарядки.

Сейчас всё большую популярность набирают литиевые аккумуляторы. Особенно пальчиковые, типа 18650 , на 3,7 В 3000 мА. Ни сколько не сомневаюсь, что ещё 3-5 лет, и они полностью вытеснят никель-кадмиевые. Правда остаётся открытым вопрос про их зарядку. Если со старыми АКБ всё понятно - собирай в батарею и через резистор к любому подходящему блоку питания, то тут такой фокус не проходит. Но как же тогда зарядить сразу несколько штук, не используя дорогие фирменные балансировочные ЗУ?

Теория

Для последовательного соединения аккумуляторов, обычно к плюсу электрической схемы подключают положительную клемму первого последовательное соединение аккумуляторов аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к минусу блока. Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой батареи равно сумме напряжений входящих в нее аккумуляторов. Значит если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.

Энергия, накопленная в АКБ, равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы - параллельно или последовательно.

Литий-ионные батареи просто подключить к БП нельзя - нужно выравнивание зарядных токов на каждом элементе (банке). Балансировку проводят при зарядке аккумулятора, когда энергии много и её можно сильно не экономить и поэтому без особых потерь можно воспользоваться пассивным рассеиванием "лишнего" электричества.

Никель-кадмиевые АКБ не требуют дополнительных систем, поскольку каждое звено при достижении его максимального напряжения заряда перестает принимать энергию. Признаки полного заряда Ni-Cd - это увеличение напряжения до определенного значения, а затем его падение на несколько десятков милливольт, и повышение температуры - так что лишняя энергия сразу превращается в тепло.

У литиевых аккумуляторов наоборот. Разрядка до низких напряжений вызывает деградацию химии и необратимое повреждение элемнта, с ростом внутреннего сопротивления. В общем они не защищены от перезаряда, и можно потратить много лишней энергии, резко сокращая тем самым время их службы.

Если соединить несколько литиевых элементов в ряд и запитать через зажимы на обоих концах блока, то мы не можем контролировать заряд отдельных элементов. Достаточно того, что одно из них будет иметь несколько более высокое сопротивление или чуть меньшую емкость, и это звено гораздо быстрее достигнет напряжения заряда 4,2 В, в то время как остальные будут еще иметь 4,1 В. И когда напряжение всего пакета достигнет напряжение заряда, может оказаться, что эти слабые звенья заряжены до 4,3 Вольт или даже больше. С каждым таким циклом будет происходить ухудшение параметров. К тому же Li-Ion является неустойчивым и при перегрузке может достичь высокой температуры, а, следовательно, взорваться.

Чаще всего на выходе источника зарядного напряжения ставится устройство, называемое "балансиром". Простейший тип балансира - это ограничитель напряжения. Он представляет из себя компаратор, сравнивающий напряжение на банке Li-Ion с пороговым значением 4,20 В. По достижении этого значения приоткрывается мощный ключ-транзистор, включенный параллельно элементу, пропускающий через себя большую часть тока заряда и превращающий энергию в тепло. На долю самой банки при этом достается крайне малая часть тока, что, практически, останавливает ее заряд, давая дозарядиться соседним. Выравнивание напряжений на элементах батареи с таким балансиром происходит только в конце заряда по достижении элементами порогового значения.

Упрощённая схема балансира для АКБ

Вот упрощённая схема балансира тока на базе TL431. Резисторы R1 и R2 устанавливают напряжение 4,20 Вольт, или можно выбрать другие, в зависимости от типа батареи. Эталонное напряжение для регулятора снимается с транзистора, и уже на границе 4,20 В система начнет приоткрывать транзистор, чтобы не допустить превышения заданного напряжения. Минимальное увеличение напряжения вызовет очень быстрый рост тока транзистора. Во время тестов, уже при 4,22 В (превышение на 20 мВ), ток составил более 1 А.

Сюда подходит в принципе любой транзистор PNP, работающий в диапазоне напряжений и токов, которые нас интересуют. Если батареи должны быть заряжены током 500 мА. Расчет его мощности прост: 4,20 В х 0,5 А = 2,1 В, и столько должен потерять транзистор, что вероятно, потребует небольшого охлаждения. Для зарядного тока 1 А или больше мощность потерь, соответственно, растет, и все труднее будет избавиться от тепла. Во время теста были проверены несколько разных транзисторов, в частности BD244C, 2N6491 и A1535A - все они ведут себя одинаково.

Делитель напряжения R1 и R2 следует подобрать так, чтобы получить нужное напряжение ограничения. Для удобства вот несколько значений после применения которых, мы получим следующие результаты:

  • R1 + R2 = Vo
  • 22K + 33K = 4,166 В
  • 15К + 22K = 4,204 В
  • 47K + 68K = 4,227 В
  • 27K + 39K = 4,230 В
  • 39K + 56K = 4,241 В
  • 33K + 47K = 4,255 В

Это аналог мощного стабилитрона, нагруженного на низкоомную нагрузку, роль которой здесь выполняют диоды D2...D5. Микросхема D1 измеряет напряжение на плюсе и минусе аккумулятора и если оно поднимается выше порога, открывает мощный транзистор, пропуская через себя весь ток от ЗУ. Как соединяется всё это вместе и к блоку питания - смотрите далее.

Блоки получаются действительно маленькие, и вы можете смело устанавливать их сразу на элементе. Следует только иметь в виду, что на корпусе транзистора возникает потенциал отрицательного полюса батареи, и вы должны быть осторожны при установке систем общего радиатора - надо использовать изоляцию корпусов транзисторов друг от друга.

Испытания

Сразу 6 штук балансировочных блоков понадобились для одновременной зарядки 6 аккумуляторов 18650. Элементы видны на фото ниже.

Все элементы зарядились ровно до 4,20 вольта (напряжение были выставлены потенциометрами), а транзисторы стали горячие, хотя и обошлось без дополнительного охлаждения - зарядка током 500 мА. Таким образом, можно смело рекомендовать данный метод для одновременного заряда нескольких литиевых аккумуляторов от общего источника напряжения.

Обсудить статью ОДНОВРЕМЕННАЯ ЗАРЯДКА НЕСКОЛЬКИХ АККУМУЛЯТОРОВ


Наверняка, каждый радиолюбитель сталкивался с проблемой, подключая литиевые аккумуляторы последовательно, замечал что один садиться быстро а другой еще вполне держит заряд, но из за другого севшего вся батарея не выдает нужного напряжения. Это происходит от того что при зарядке всего блока батарей, они заряжаются не равномерно, и часть батарей набирают полную емкость а часть нет. Это приводит не только к быстрому разряду, но и к выходу из строя отдельных элементов, из за постоянной не до зарядки.
Исправить проблему достаточно просто, на каждый аккумуляторный элемент нужен так называемый балансир, устройство которое после полной зарядки батареи блокирует ее дальнейший перезаряд, и управляющим транзистором обводит зарядный ток мимо элемента.
Схема балансира достаточно проста, собрана на прецизионном управляемом стабилитроне TL431A, и транзисторе прямой проводимости BD140.


После долгих экспериментов схема немного изменилась, в место резисторов было установлено 3 последовательно включенных диода 1N4007, работать балансир стал как по мне стабильней, диоды при зарядке ощутимо греются, это следует учитывать при разводке платы.


Принцип работы очень прост, пока напряжение на элементе меньше 4,2 вольта, идет зарядка, управляемый стабилитрон и транзистор закрыты и не влияют на процесс зарядки. Как только напряжение достигнет 4,2 вольта, стабилитрон начинает открывать транзистор, который через резисторы суммарным сопротивлением 4 Ома шунтирует аккумулятор, тем самым не давая напряжению подняться выше верхнего порога 4,2 вольта, и дает возможность зарядиться остальным аккумуляторам. Транзистор с резисторами спокойно пропускает ток около 500 мА, при этом он нагревается градусов до 40-45. Как только на балансире загорелся светодиод аккумулятор который к нему подключен полностью заряжен. То есть, если у вас соединено 3 аккумулятора, то окончанием заряда нужно считать загорание светодиодов на всех трех балансирах.
Настройка очень проста, подаем на плату (без аккумулятора) напряжение 5 вольт через резистор примерно 220 Ом, и меряем на плате напряжение, оно должно быть 4,2 вольта, если оно отличается то подбираем резистор 220 кОм в небольших пределах.
Напряжение для зарядки нужно подавать примерно на 0,1-0,2 вольта больше чем напряжение на каждом элементе в заряженном состоянии, пример: у нас 3 последовательно соединенных аккумулятора по 4,2 вольта в заряженном состоянии, суммарное напряжение 12,6 вольта. 12,6 + 0,1 + 0,1 + 0,1 = 12,9 вольта. Также следует ограничит ток заряда на уровне 0,5 А.
Как вариант стабилизатора напряжения и тока можно использовать микросхему LM317, включение стандартное с даташита, схема выглядит следующим образом.


Трансформатор нужно выбирать с расчета - напряжение заряженной батареи + 3 вольта по переменке, для корректной работы LM317. Пример у вас батарея 12,6 вольта + 3 вольт = трансформатор нужен 15-16 вольт переменного напряжения.
Так как LM317 линейный регулятор, и падение напряжения на нем превратится в тепло, обязательно устанавливаем ее на радиатор.
Теперь немного о том как рассчитать делитель R3-R4 для стабилизации напряжения , а очень просто по формуле R3+R4=(Vo/1.25-1)*R2 , величина Vo - это напряжение окончания заряда (максимальное выходное после стабилизатора).
Пример: нам нужно получить на выходе 12,9 вольта для 3-х. батарей с балансирами. R3+R4=(12.9/1.25-1)*240=2476,8 Ом. что примерно ровняется 2,4 кОм + у нас стоит подстроечный резистор, для точной подстройки (470 Ом), что позволит нам, без проблем установить расчетное выходное напряжение.
Теперь расчет выходного тока, за него отвечает резистор Ri, формула простая Ri=0.6/Iз , где Iз - максимальный ток заряда. Пример нам нужен ток 500 мА, Ri=0.6/0,5А= 1,2 Ом. Следует учитывать, что через данный резистор течет зарядный ток, потому мощность его стоит брать 2 Вт. Вот и все, платы я не выкладываю, они будут когда я соберу зарядное устройство с балансиром для своего металлоискателя.

Оценка характеристик того или иного зарядного устройства затруднительна без понимания того, как собственно должен протекать образцовый заряд li-ion аккумулятора. Поэтому прежде чем перейти непосредственно к схемам, давайте немного вспомним теорию.

Какими бывают литиевые аккумуляторы

В зависимости от того, из какого материала изготовлен положительный электрод литиевого аккумулятора, существует их несколько разновидностей:

  • с катодом из кобальтата лития;
  • с катодом на основе литированного фосфата железа;
  • на основе никель-кобальт-алюминия;
  • на основе никель-кобальт-марганца.

У всех этих аккумуляторов имеются свои особенности, но так как для широкого потребителя эти нюансы не имеют принципиального значения, в этой статье они рассматриваться не будут.

Также все li-ion аккумуляторы производят в различных типоразмерах и форм-факторах. Они могут быть как в корпусном исполнении (например, популярные сегодня 18650) так и в ламинированном или призматическом исполнении (гель-полимерные аккумуляторы). Последние представляют собой герметично запаянные пакеты из особой пленки, в которых находятся электроды и электродная масса.

Наиболее распространенные типоразмеры li-ion аккумуляторов приведены в таблице ниже (все они имеют номинальное напряжение 3.7 вольта):

Обозначение Типоразмер Схожий типоразмер
XXYY0 ,
где XX - указание диаметра в мм,
YY - значение длины в мм,
0 - отражает исполнение в виде цилиндра
10180 2/5 AAA
10220 1/2 AAA (Ø соответствует ААА, но на половину длины)
10280
10430 ААА
10440 ААА
14250 1/2 AA
14270 Ø АА, длина CR2
14430 Ø 14 мм (как у АА), но длина меньше
14500 АА
14670
15266, 15270 CR2
16340 CR123
17500 150S/300S
17670 2xCR123 (или 168S/600S)
18350
18490
18500 2xCR123 (или 150A/300P)
18650 2xCR123 (или 168A/600P)
18700
22650
25500
26500 С
26650
32650
33600 D
42120

Внутренние электрохимические процессы протекают одинаково и не зависят от форм-фактора и исполнения АКБ, поэтому все, сказанное ниже, в равной степени относится ко всем литиевым аккумуляторам.

Как правильно заряжать литий-ионные аккумуляторы

Наиболее правильным способом заряда литиевых аккумуляторов является заряд в два этапа. Именно этот способ использует компания Sony во всех своих зарядниках. Несмотря на более сложный контроллер заряда, это обеспечивает более полный заряд li-ion аккумуляторов, не снижая срока их службы.

Здесь речь идет о двухэтапном профиле заряда литиевых аккумуляторов, сокращенно именуемым CC/CV (constant current, constant voltage). Есть еще варианты с ипульсным и ступенчатым токами, но в данной статье они не рассматриваются. Подробнее про зарядку импульсным током можно прочитать .

Итак, рассмотрим оба этапа заряда подробнее.

1. На первом этапе должен обеспечиваться постоянный ток заряда. Величина тока составляет 0.2-0.5С. Для ускоренного заряда допускается увеличение тока до 0.5-1.0С (где С - это емкость аккумулятора).

Например, для аккумулятора емкостью 3000 мА/ч, номинальный ток заряда на первом этапе равен 600-1500 мА, а ток ускоренного заряда может лежать в пределах 1.5-3А.

Для обеспечения постоянного зарядного тока заданной величины, схема зарядного устройства (ЗУ) должна уметь поднимать напряжение на клеммах аккумулятора. По сути, на первом этапе ЗУ работает как классический стабилизатор тока.

Важно: если планируется заряд аккумуляторов со встроенной платой защиты (PCB), то при конструировании схемы ЗУ необходимо убедиться, что напряжение холостого хода схемы никогда не сможет превысить 6-7 вольт. В противном случае плата защиты может выйти из строя.

В момент, когда напряжение на аккумуляторе поднимется до значения 4.2 вольта, аккумулятор наберет приблизительно 70-80% своей емкости (конкретное значение емкости будет зависит от тока заряда: при ускоренном заряде будет чуть меньше, при номинальном - чуть больше). Этот момент является окончанием первого этапа заряда и служит сигналом для перехода ко второму (и последнему) этапу.

2. Второй этап заряда - это заряд аккумулятора постоянным напряжением, но постепенно снижающимся (падающим) током.

На этом этапе ЗУ поддерживает на аккумуляторе напряжение 4.15-4.25 вольта и контролирует значение тока.

По мере набора емкости, зарядный ток будет снижаться. Как только его значение уменьшится до 0.05-0.01С, процесс заряда считается оконченным.

Важным нюансом работы правильного зарядного устройства является его полное отключение от аккумулятора после окончания зарядки. Это связано с тем, что для литиевых аккумуляторов является крайне нежелательным их длительное нахождение под повышенным напряжением, которое обычно обеспечивает ЗУ (т.е. 4.18-4.24 вольта). Это приводит к ускоренной деградации химического состава аккумулятора и, как следствие снижению его емкости. Под длительным нахождением подразумевается десятки часов и более.

За время второго этапа заряда, аккумулятор успевает набрать еще примерно 0.1-0.15 своей емкости. Общий заряд аккумулятора таким образом достигает 90-95%, что является отличным показателем.

Мы рассмотрели два основных этапа заряда. Однако, освещение вопроса зарядки литиевых аккумуляторов было бы неполным, если бы не был упомянут еще один этап заряда - т.н. предзаряд.

Предварительный этап заряда (предзаряд) - этот этап используется только для глубоко разряженных аккумуляторов (ниже 2.5 В) для вывода их на нормальный эксплуатационный режим.

На этом этапе заряд обеспечивается постоянным током пониженной величины до тех пор, пока напряжение на аккумуляторе не достигнет значения 2.8 В.

Предварительный этап необходим для предотвращения вспучивания и разгерметизации (или даже взрыва с возгоранием) поврежденных аккумуляторов, имеющих, например, внутреннее короткое замыкание между электродами. Если через такой аккумулятор сразу пропустить большой ток заряда, это неминуемо приведет к его разогреву, а дальше как повезет.

Еще одна польза предзаряда - это предварительный прогрев аккумулятора, что актуально при заряде при низких температурах окружающей среды (в неотапливаемом помещении в холодное время года).

Интеллектуальная зарядка должна уметь контролировать напряжение на аккумуляторе во время предварительного этапа заряда и, в случае, если напряжение долгое время не поднимается, делать вывод о неисправности аккумулятора.

Все этапы заряда литий-ионного аккумулятора (включая этап предзаряда) схематично изображены на этом графике:

Превышение номинального зарядного напряжения на 0,15В может сократить срок службы аккумулятора вдвое. Понижение напряжения заряда на 0,1 вольт уменьшает емкость заряженной батареи примерно на 10%, но значительно продляет срок ее службы. Напряжение полностью заряженного аккумулятора после извлечения его из зарядного устройства составляет 4.1-4.15 вольта.

Резюмирую вышесказанное, обозначим основные тезисы:

1. Каким током заряжать li-ion аккумулятор (например, 18650 или любой другой)?

Ток будет зависеть от того, насколько быстро вы хотели бы его зарядить и может лежать в пределах от 0.2С до 1С.

Например, для аккумулятора типоразмера 18650 емкостью 3400 мА/ч, минимальный ток заряда составляет 680 мА, а максимальный - 3400 мА.

2. Сколько времени нужно заряжать, например, те же аккумуляторные батарейки 18650?

Время заряда напрямую зависит от тока заряда и рассчитывается по формуле:

T = С / I зар.

Например, время заряда нашего аккумулятора емкостью 3400 мА/ч током в 1А составит около 3.5 часов.

3. Как правильно зарядить литий-полимерный аккумулятор?

Любые литиевые аккумуляторы заряжаются одинаково. Не важно, литий-полимерный он или литий-ионный. Для нас, потребителей, никакой разницы нет.

Что такое плата защиты?

Плата защиты (или PCB - power control board) предназначена для защиты от короткого замыкания, перезаряда и переразряда литиевой батареи. Как правило в модули защиты также встроена и защита от перегрева.

В целях соблюдения техники безопасности запрещено использование литиевых аккумуляторов в бытовых приборах, если в них не встроена плата защиты. Поэтому во всех аккумуляторах от сотовых телефонов всегда есть PCB-плата. Выходные клеммы АКБ размещены прямо на плате:

В этих платах используется шестиногий контроллер заряда на специализированной микрухе (JW01, JW11, K091, G2J, G3J, S8210, S8261, NE57600 и пр. аналоги). Задачей этого контроллера является отключение батареи от нагрузки при полном разряде батареи и отключение аккумулятора от зарядки при достижении 4,25В.

Вот, например, схема платы защиты от аккумулятора BP-6M, которыми снабжались старые нокиевские телефоны:

Если говорить об 18650, то они могут выпускаться как с платой защиты так и без нее. Модуль защиты располагается в районе минусовой клеммы аккумулятора.

Плата увеличивает длину аккумулятора на 2-3 мм.

Аккумуляторы без PCB-модуля обычно входят в состав батарей, комплектуемых собственными схемами защиты.

Любой аккумулятор с защитой легко превращается в аккумулятор без защиты, достаточно просто распотрошить его.

На сегодняшний день максимальная емкость аккумулятора 18650 составляет 3400 мА/ч. Аккумуляторы с защитой обязательно имеют соответствующее обозначение на корпусе ("Protected").

Не стоит путать PCB-плату с PCM-модулем (PCM - power charge module). Если первые служат только целям защиты аккумулятора, то вторые предназначены для управления процессом заряда - ограничивают ток заряда на заданном уровне, контролируют температуру и, вообще, обеспечивают весь процесс. PCM-плата - это и есть то, что мы называем контроллером заряда.

Надеюсь, теперь не осталось вопросов, как зарядить аккумулятор 18650 или любой другой литиевый? Тогда переходим к небольшой подборке готовых схемотехнических решений зарядных устройств (тех самых контроллеров заряда).

Схемы зарядок li-ion аккумуляторов

Все схемы подходят для зарядки любого литиевого аккумулятора, остается только определиться с зарядным током и элементной базой.

LM317

Схема простого зарядного устройства на основе микросхемы LM317 с индикатором заряда:

Схема простейшая, вся настройка сводится к установке выходного напряжения 4.2 вольта с помощью подстроечного резистора R8 (без подключенного аккумулятора!) и установке тока заряда путем подбора резисторов R4, R6. Мощность резистора R1 - не менее 1 Ватт.

Как только погаснет светодиод, процесс заряда можно считать оконченным (зарядный ток до нуля никогда не уменьшится). Не рекомендуется долго держать аккумулятор в этой зарядке после того, как он полностью зарядится.

Микросхема lm317 широко применяется в различных стабилизаторах напряжения и тока (в зависимости от схемы включения). Продается на каждом углу и стоит вообще копейки (можно взять 10 шт. всего за 55 рублей).

LM317 бывает в разных корпусах:

Назначение выводов (цоколевка):

Аналогами микросхемы LM317 являются: GL317, SG31, SG317, UC317T, ECG1900, LM31MDT, SP900, КР142ЕН12, КР1157ЕН1 (последние два - отечественного производства).

Зарядный ток можно увеличить до 3А, если вместо LM317 взять LM350. Она, правда, подороже будет - 11 руб/шт .

Печатная плата и схема в сборе приведены ниже:

Старый советский транзистор КТ361 можно заменить на аналогичный p-n-p транзистор (например, КТ3107, КТ3108 или буржуйские 2N5086, 2SA733, BC308A). Его можно вообще убрать, если индикатор заряда не нужен.

Недостаток схемы: напряжение питания должно быть в пределах 8-12В. Это связано с тем, что для нормальной работы микросхемы LM317 разница между напряжением на аккумуляторе и напряжением питания должна быть не менее 4.25 Вольт. Таким образом, от USB-порта запитать не получится.

MAX1555 или MAX1551

MAX1551/MAX1555 - специализированные зарядные устройства для Li+ аккумуляторов, способные работать от USB или от отдельного адаптера питания (например, зарядника от телефона).

Единственное отличие этих микросхем - МАХ1555 выдает сигнал для индикатора процесса заряда, а МАХ1551 - сигнал того, что питание включено. Т.е. 1555 в большинстве случаев все-таки предпочтительнее, поэтому 1551 сейчас уже трудно найти в продаже.

Подробное описание этих микросхем от производителя - .

Максимальное входное напряжение от DC-адаптера - 7 В, при питании от USB - 6 В. При снижении напряжения питания до 3.52 В, микросхема отключается и заряд прекращается.

Микросхема сама детектирует на каком входе присутствует напряжение питания и подключается к нему. Если питание идет по ЮСБ-шине, то максимальный ток заряда ограничивается 100 мА - это позволяет втыкать зарядник в USB-порт любого компьютера, не опасаясь сжечь южный мост.

При питании от отдельного блока питания, типовое значение зарядного тока составляет 280 мА.

В микросхемы встроена защита от перегрева. Но даже в этом случае схема продолжает работать, уменьшая ток заряда на 17 мА на каждый градус выше 110°C.

Имеется функция предварительного заряда (см. выше): до тех пор пока напряжение на аккумуляторе находится ниже 3В, микросхема ограничивает ток заряда на уровне 40 мА.

Микросхема имеет 5 выводов. Вот типовая схема включения:

Если есть гарантия, что на выходе вашего адаптера напряжение ни при каких обстоятельствах не сможет превысить 7 вольт, то можно обойтись без стабилизатора 7805.

Вариант зарядки от USB можно собрать, например, на такой .

Микросхемы не нуждается ни во внешних диодах, ни во внешних транзисторах. Вообще, конечно, шикарные микрухи! Только они маленькие слишком, паять неудобно. И еще стоят дорого ().

LP2951

Стабилизатор LP2951 производится фирмой National Semiconductors (). Он обеспечивает реализацию встроенной функции ограничения тока и позволяет формировать на выходе схемы стабильный уровень напряжения заряда литий-ионного аккумулятора.

Величина напряжения заряда составляет 4,08 - 4,26 вольта и выставляется резистором R3 при отключенном аккумуляторе. Напряжение держится очень точно.

Ток заряда составляет 150 - 300мА, это значение ограничено внутренними цепями микросхемы LP2951 (зависит от производителя).

Диод применять с небольшим обратным током. Например, он может быть любым из серии 1N400X, какой удастся приобрести. Диод используется, как блокировочный, для предотвращения обратного тока от аккумулятора в микросхему LP2951 при отключении входного напряжения.

Данная зарядка выдает довольно низкий зарядный ток, так что какой-нибудь аккумулятор 18650 может заряжаться всю ночь.

Микросхему можно купить как в DIP-корпусе , так и в корпусе SOIC (стоимость около 10 рублей за штучку).

MCP73831

Микросхема позволяет создавать правильные зарядные устройства, к тому же она дешевле, чем раскрученная MAX1555.

Типовая схема включения взята из :

Важным достоинством схемы является отсутствие низкоомных мощных резисторов, ограничивающих ток заряда. Здесь ток задается резистором, подключенным к 5-ому выводу микросхемы. Его сопротивление должно лежать в диапазоне 2-10 кОм.

Зарядка в сборе выглядит так:

Микросхема в процессе работы неплохо так нагревается, но это ей вроде не мешает. Свою функцию выполняет.

Вот еще один вариант печатной платы с smd светодиодом и разъемом микро-USB:

LTC4054 (STC4054)

Очень простая схема, отличный вариант! Позволяет заряжать током до 800 мА (см. ). Правда, она имеет свойство сильно нагреваться, но в этом случае встроенная защита от перегрева снижает ток.

Схему можно существенно упростить, выкинув один или даже оба светодиодов с транзистором. Тогда она будет выглядеть вот так (согласитесь, проще некуда: пара резисторов и один кондер):

Один из вариантов печатной платы доступен по . Плата рассчитана под элементы типоразмера 0805.

I=1000/R . Сразу большой ток выставлять не стоит, сначала посмотрите, насколько сильно будет греться микросхема. Я для своих целей взял резистор на 2.7 кОм, при этом ток заряда получился около 360 мА.

Радиатор к этой микросхеме вряд ли получится приспособить, да и не факт, что он будет эффективен из-за высокого теплового сопротивления перехода кристалл-корпус. Производитель рекомендует делать теплоотвод "через выводы" - делать как можно более толстые дорожки и оставлять фольгу под корпусом микросхемы. И вообще, чем больше будет оставлено "земляной" фольги, тем лучше.

Кстати говоря, бОльшая часть тепла отводится через 3-ю ногу, так что можно сделать эту дорожку очень широкой и толстой (залить ее избыточным количеством припоя).

Корпус микросхемы LTC4054 может иметь маркировку LTH7 или LTADY.

LTH7 от LTADY отличаются тем, что первая может поднять сильно севший аккумулятор (на котором напряжение меньше 2.9 вольт), а вторая - нет (нужно отдельно раскачивать).

Микросхема вышла очень удачной, поэтому имеет кучу аналогов: STC4054, MCP73831, TB4054, QX4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054, IT4504, Y1880, PT6102, PT6181, VS6102, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051. Прежде, чем использовать какой-либо из аналогов, сверяйтесь по даташитам.

TP4056

Микросхема выполнена в корпусе SOP-8 (см. ), имеет на брюхе металлический теплосьемник не соединенный с контактами, что позволяет эффективнее отводить тепло. Позволяет заряжать аккумулятор током до 1А (ток зависит от токозадающего резистора).

Схема подключения требует самый минимум навесных элементов:

Схема реализует классический процесс заряда - сначала заряд постоянным током, затем постоянным напряжением и падающим током. Все по-научному. Если разобрать зарядку по шагам, то можно выделить несколько этапов:

  1. Контроль напряжения подключенного аккумулятора (это происходит постоянно).
  2. Этап предзаряда (если аккумулятор разряжен ниже 2.9 В). Заряд током 1/10 от запрограммированного резистором R prog (100мА при R prog = 1.2 кОм) до уровня 2.9 В.
  3. Зарядка максимальным током постоянной величины (1000мА при R prog = 1.2 кОм);
  4. При достижении на батарее 4.2 В, напряжение на батарее фиксируется на этому уровне. Начинается плавное снижение зарядного тока.
  5. При достижении тока 1/10 от запрограммированного резистором R prog (100мА при R prog = 1.2кОм) зарядное устройство отключается.
  6. После окончания зарядки контроллер продолжает мониторинг напряжения аккумулятора (см. п.1). Ток, потребляемый схемой мониторинга 2-3 мкА. После падения напряжения до 4.0В, зарядка включается снова. И так по кругу.

Ток заряда (в амперах) рассчитывается по формуле I=1200/R prog . Допустимый максимум - 1000 мА.

Реальный тест зарядки с аккумулятором 18650 на 3400 мА/ч показан на графике:

Достоинство микросхемы в том, что ток заряда задается всего лишь одним резистором. Не требуются мощные низкоомные резисторы. Плюс имеется индикатор процесса заряда, а также индикация окончания зарядки. При неподключенном аккумуляторе, индикатор моргает с периодичностью раз в несколько секунд.

Напряжение питания схемы должно лежать в пределах 4.5...8 вольт. Чем ближе к 4.5В - тем лучше (так чип меньше греется).

Первая нога используется для подключения датчика температуры, встроенного в литий-ионную батарею (обычно это средний вывод аккумулятора сотового телефона). Если на выводе напряжение будет ниже 45% или выше 80% от напряжения питания, то зарядка приостанавливается. Если контроль температуры вам не нужен, просто посадите эту ногу на землю.

Внимание! У данной схемы есть один существенный недостаток: отсутствие схемы защиты от переполюсовки батареи. В этом случае контроллер гарантированно выгорает из строя из-за превышения максимального тока. При этом напряжение питания схемы напрямую попадает на аккумулятор, что очень опасно.

Печатка простая, делается за час на коленке. Если время терпит, можно заказать готовые модули. Некоторые производители готовых модулей добавляют защиту от перегрузки по току и переразряда ( , например, можно выбрать какая плата вам нужна - с защитой или без, и с каким разъемом).

Так же можно найти готовые платы с выведенным контактом под температурный датчик. Или даже модуль зарядки с несколькими запараллеленными микросхемами TP4056 для увеличения зарядного тока и с защитой от переполюсовки (пример).

LTC1734

Тоже очень простая схема. Ток заряда задается резистором R prog (например, если поставить резистор на 3 кОм, ток будет равен 500 мА).

Микросхемы обычно имеют маркировку на корпусе: LTRG (их можно часто встретить в старых телефонах от самсунгов).

Транзистор подойдет вообще любой p-n-p, главное, чтобы он был рассчитан на заданный ток зарядки.

Индикатора заряда на указанной схеме нет, но в на LTC1734 сказано, что вывод "4" (Prog) имеет две функции - установку тока и контроль окончания заряда батареи. Для примера приведена схема с контролем окончания заряда при помощи компаратора LT1716.

Компаратор LT1716 в данном случае можно заменить дешевым LM358.

TL431 + транзистор

Наверное, сложно придумать схему из более доступных компонентов. Здесь самое сложное - это найти источник опорного напряжение TL431. Но они настолько распространены, что встречаются практически повсюду (редко какой источник питания обходится без этой микросхемы).

Ну а транзистор TIP41 можно заменить любым другим с подходящим током коллектора. Подойдут даже старые советские КТ819, КТ805 (или менее мощные КТ815, КТ817).

Настройка схемы сводится к установке выходного напряжения (без аккумулятора!!!) с помощью подстроечного резистора на уровне 4.2 вольта. Резистор R1 задает максимальное значение зарядного тока.

Данная схема полноценно реализует двухэтапный процесс заряда литиевых аккумуляторов - сначала зарядка постоянным током, затем переход к фазе стабилизации напряжения и плавное снижение тока практически до нуля. Единственный недостаток - плохая повторяемость схемы (капризна в настройке и требовательна к используемым компонентам).

MCP73812

Есть еще одна незаслуженно обделенная вниманием микросхема от компании Microchip - MCP73812 (см. ). На ее базе получается очень бюджетный вариант зарядки (и недорогой!). Весь обвес - всего один резистор!

Кстати, микросхема выполнена в удобном для пайки корпусе - SOT23-5.

Единственный минус - сильно греется и нет индикации заряда. Еще она как-то не очень надежно работает, если у вас маломощный источник питания (который дает просадку напряжения).

В общем, если для вас индикация заряда не важна, и ток в 500 мА вас устраивает, то МСР73812 - очень неплохой вариант.

NCP1835

Предлагается полностью интегрированное решение - NCP1835B, обеспечивающее высокую стабильность зарядного напряжения (4.2 ±0.05 В).

Пожалуй, единственным недостатком данной микросхемы является ее слишком миниатюрный размер (корпус DFN-10, размер 3х3 мм). Не каждому под силу обеспечить качественную пайку таких миниатюрных элементов.

Из неоспоримых преимуществ хотелось бы отметить следующее:

  1. Минимальное количество деталей обвеса.
  2. Возможность зарядки полностью разряженной батареи (предзаряд током 30мА);
  3. Определение окончания зарядки.
  4. Программируемый зарядный ток - до 1000 мА.
  5. Индикация заряда и ошибок (способна детектировать незаряжаемые батарейки и сигнализировать об этом).
  6. Защита от продолжительного заряда (изменяя емкость конденсатора С т, можно задать максимальное время заряда от 6,6 до 784 минут).

Стоимость микросхемы не то чтобы копеечная, но и не настолько большая (~1$), чтобы отказаться от ее применения. Если вы дружите с паяльником, я бы порекомендовал остановить свой выбор на этом варианте.

Более подробное описание находится в .

Можно ли заряжать литий-ионный аккумулятор без контроллера?

Да, можно. Однако это потребует плотного контроля за зарядным током и напряжением.

Вообще, зарядить АКБ, к примеру, наш 18650 совсем без зарядного устройства не получится. Все равно нужно как-то ограничивать максимальный ток заряда, так что хотя бы самое примитивное ЗУ, но все же потребуется.

Самое простейшее зарядное устройство для любого литиевого аккумулятора - это резистор, включенный последовательно с аккумулятором:

Сопротивление и мощность рассеяния резистора зависят от напряжения источника питания, который будет использоваться для зарядки.

Давайте в качестве примера, рассчитаем резистор для блока питания напряжением 5 Вольт. Заряжать будем аккумулятор 18650, емкостью 2400 мА/ч.

Итак, в самом начале зарядки падение напряжение на резисторе будет составлять:

U r = 5 - 2.8 = 2.2 Вольта

Предположим, наш 5-вольтовый блок питания рассчитан на максимальный ток 1А. Самый большой ток схема будет потреблять в самом начале заряда, когда напряжение на аккумуляторе минимально и составляет 2.7-2.8 Вольта.

Внимание: в данных расчетах не учитывается вероятность того, что аккумулятор может быть очень глубоко разряжен и напряжение на нем может быть гораздо ниже, вплоть до нуля.

Таким образом, сопротивление резистора, необходимое для ограничения тока в самом начале заряда на уровне 1 Ампера, должно составлять:

R = U / I = 2.2 / 1 = 2.2 Ом

Мощность рассеивания резистора:

P r = I 2 R = 1*1*2.2 = 2.2 Вт

В самом конце заряда аккумулятора, когда напряжение на нем приблизится к 4.2 В, ток заряда будет составлять:

I зар = (U ип - 4.2) / R = (5 - 4.2) / 2.2 = 0.3 А

Т.е., как мы видим, все значения не выходят за рамки допустимых для данного аккумулятора: начальный ток не превышает максимально допустимый ток заряда для данного аккумулятора (2.4 А), а конечный ток превышает ток, при котором аккумулятор уже перестает набирать емкость (0.24 А).

Самый главный недостаток такой зарядки состоит в необходимости постоянно контролировать напряжение на аккумуляторе. И вручную отключить заряд, как только напряжение достигнет 4.2 Вольта. Дело в том, что литиевые аккумуляторы очень плохо переносят даже кратковременное перенапряжение - электродные массы начинают быстро деградировать, что неминуемо приводит к потери емкости. Одновременно с этим создаются все предпосылки для перегрева и разгерметизации.

Если в ваш аккумулятор встроена плата защиты, о которых речь шла чуть выше, то все упрощается. По достижении определенного напряжение на аккумуляторе, плата сама отключит его от зарядного устройства. Однако такой способ зарядки имеет существенные минусы, о которых мы рассказывали в .

Защита, встроенная в аккумулятор не позволит его перезарядить ни при каких обстоятельствах. Все, что вам остается сделать, это проконтролировать ток заряда, чтобы он не превысил допустимые значения для данного аккумулятора (платы защиты не умеют ограничивать ток заряда, к сожалению).

Зарядка при помощи лабораторного блока питания

Если в вашем распоряжении имеется блок питания с защитой (ограничением) по току, то вы спасены! Такой источник питания уже является полноценным зарядным устройством, реализующим правильный профиль заряда, о котором мы писали выше (СС/СV).

Все, что нужно сделать для зарядки li-ion - это выставить на блоке питания 4.2 вольта и установить желаемое ограничение по току. И можно подключать аккумулятор.

Вначале, когда аккумулятор еще разряжен, лабораторный блок питания будет работать в режиме защиты по току (т.е. будет стабилизировать выходной ток на заданном уровне). Затем, когда напряжение на банке поднимется до установленных 4.2В, блок питания перейдет в режим стабилизации напряжения, а ток при этом начнет падать.

Когда ток упадет до 0.05-0.1С, аккумулятор можно считать полностью заряженным.

Как видите, лабораторный БП - практически идеальное зарядное устройство! Единственное, что он не умеет делать автоматически, это принимать решение о полной зарядке аккумулятора и отключаться. Но это мелочь, на которую даже не стоит обращать внимания.

Как заряжать литиевые батарейки?

И если мы говорим об одноразовой батарейке, не предназначенной для перезарядки, то правильный (и единственно верный) ответ на этот вопрос - НИКАК.

Дело в том, что любая литиевая батарейка (например, распространенная CR2032 в виде плоской таблетки) характеризуется наличием внутреннего пассивирующего слоя, которым покрыт литиевый анод. Этот слой предотвращает химическую реакцию анода с электролитом. А подача стороннего тока разрушает вышеуказанный защитный слой, приводя к порче элемента питания.

Кстати, если говорить о незаряжаемой батарейке CR2032, то есть очень похожая на нее LIR2032 - это уже полноценный аккумулятор. Ее можно и нужно заряжать. Только у нее напряжение не 3, а 3.6В.

О том же, как заряжать литиевые аккумуляторы (будь то аккумулятор телефона, 18650 или любой другой li-ion аккумулятор) шла речь в начале статьи.

85 коп/шт. Купить MCP73812 65 руб/шт. Купить NCP1835 83 руб/шт. Купить *Все микросхемы с бесплатной доставкой

Зачем вообще нужны балансиры для 12-ти вольтовые АКБ? Когда у вас система на 12 вольт, то все АКБ сколько бы их небыло в параллельном соединении, и у них всегда одинаковое напряжение. Но когда мы переходим на 24 или 48 вольт, то появляется проблема с разным напряжением на последовательно соединённых аккумуляторах. Из-за этого при заряде некоторые акб уходят в перезаряд и начинают "закипать", а другие недозаряжаются, и в итоге вся цепочка АКБ быстро теряет ёмкость и в общем приходит в негодность.

И даже полностью одинаковые АКБ со временем всё равно разбегаются по напряжению, по-этому не спасёт от проблемы даже купленные АКБ из одной партии. Для решения этой проблемы давно применяются различные балансировочные устройства, это или отдельные балансиры на каждый АКБ, или блоки на 24 и 48 вольт. Балансиры позволяют значительно продлить срок службы АКБ.

Я сам в скором будущем буду переходить на 24 вольта, так-как токи в системе стали уже большими и мне тоже понадобятся балансиры. В поисках я нашёл несколько вариантов различных по возможностям, цене и принципу работы, и ниже я сделаю обзор на эти балансировочные устройства.

VICTRON BATTERY BALANCER аккумуляторный балансир

Первым мне попались вот такие балансиры (фото ниже). Это судя по описанию активные балансиры с током балансировки 0.7А. Активные это значит что энергия с более заряженного АКБ переливается в менее заряженный, а не просто сжигается на сопротивлении. Но до конца я в этом не уверен так как описания на разных сайтах разнятся. Этот балансир для двух АКБ, то-есть на 24 вольта, с добавлением АКБ количество балансиров нужно увеличивать. На 48 вольт нужно уже три таких балансира.

Этот балансир не имеет возможности настройки под различные типы свинцовых аккумуляторов. Есть индикация работы, и реле тревоги, оно замыкается если на акб различие по напряжению превышает 0.2 вольта. Цена на этот балансир просто убила, на момент написания статьи цена на сайте была 6220 рублей . На 48 вольт их надо три штуки и в общем нужно отдать 18660 рублей плюс доставка.

Схема подключения этих балансиров к АКБ. Светодиодные индикаторы и реле сигнализации:

Зеленый: включен, когда напряжение АКБ более 27,3 В
Оранжевый: включен при отклонении более 0,1 В
Красный: тревога (отклонение более 0, 2 В)
Реле сигнализации: нормально открытый контакт замыкается, когда включается красный светодиод. Контакт остается замкнутым до уменьшения отклонения до 0,14 В, или до снижения напряжения АКБ до 26,6 В. Сброс реле сигнализации осуществляется при помощи кнопки, подключенной к двум терминалам.

>

Из минусов слишком высокая цена, слабый ток балансировки всего 0,7А, и нет возможности настройки под свой тип АКБ. Есть более лучшие аналоги по приемлемой цене.

Устройство выравнивания заряда ЭЛНИ 2/12 на 2АКБ 12В

Нашёл так-же ещё вот такой балансир. Это уже явно активный балансир, явно превосходящий первый по току балансировки, у этого ток 5А в сравнении 0.7А у первого. Цена правда тоже не маленькая - 3600-3900 руб на разных сайтах.

Этот балансир постоянно отслеживает напряжение соединённых последовательно акб, и выравнивает напряжение переливая энергию между АКБ. И это он делает не только во время заряда, когда АКБ уже почти зарядились, а постоянно если есть дисбаланс. И ток балансировки здесь может достигать 5А, это значит что балансир может справляться даже с большим дисбалансом по ёмкости.

>

На этом на наших сайтах я не нашёл ничего оригинального, что бы не имелось на алиэкспресс. Есть конечно много балансиров, но все они куплены в китае и продаются у нас втридорого. Так зачем переплачивать если можно самим купить на алиэкспресс то что предлагают наши перекупщики.

Активный балансир для 12в АКБ

На алиэкспресс я нашёл вот такой балансир. Это активный балансир с максимальным током балансировки 10А. Он отслеживает напряжение на последовательно соединённых АКБ и выравнивает напряжение переливая энергию между АКБ с точностью 10mV. Каждый балансир ставится на свой аккумулятор, и балансиры соединяются между собой. Посмотреть описание и купить можно здесь Балансир 12V . Цена на момент написания статьи 1700 рублей, и это не дорого за такой мощный активный балансир.

>

Производитель этих балансиров выпускает несколько различных типов балансиров. В продаже есть балансиры на 2 вольта для отдельных свинцово-кислотных "банок". Также балансиры для литий-ионных АКБ на 3,6 и 4,2 вольта. И балансиры для аккумуляторов на 6 и 12 вольт. Все балвнсиры можно посмотреть здесь - Каталог балансиров 2/3.6/3.8/4.2/6/12 вольт

Балансир аккумуляторый на 24 вольта (12*2)

Так-же нашёл я ещё один популярный по заказам и дешовый балансир для аккмуляторов. Это балансир для двух АКБ по 12 вольт, можно ставить несколько если система на 48 вольт и выше. Ток балансировки до 5А что довольно неплохо. Единственное я так и не понял активный он или пассивный, но судя по размерам и отсутствию радиатора это активный балансир. Цена этого балансира 1760 рублей, посмотреть можно здесь - Двойной Балансир для 12в АКБ

>

Цена очень привлекательная, и ток балансировки очень приличный 5А, по-этому справится даже с болшой разницей по ёмкости и напряжению между АКБ в системе.

Балансир для (12×4) 48 вольт АКБ

Вот ещё один отличный активный балансир для аккумуляторов, он сделан в виде блока на 48 вольт, то-есть для четырёх последовательно соединённых АКБ. Ток балансировки до 10 ампер, и это просто отлично, позволит ликвидировать даже большой дисбаланс. Посмотреть полное описание и купить его моно по этой сылке на алиэкспресс - Балансир для 48в АКБ (12×4) , цена 3960 рублей.

>

Пока это всё что мне удалось найти, хотя конечно не всё, но это основное. Есть контроллеры для солнечных батарей со встроенными балансирами, но это очень дорого пока. Есть зарядные устройства с балансировкой, но здесь они неуместны. Есть всякие электронные схемы, которые можно заставить работать как балансиры, есть варианты самостоятельного изготовления балансиров.